{"title":"Characterizing Styrene Monomer and Oligomers by SEC/MALS/VISC/DRI","authors":"André M. Striegel","doi":"10.1007/s10337-023-04306-8","DOIUrl":null,"url":null,"abstract":"<div><p>Worldwide polystyrene (PS) production in 2020 was approximately 27 million metric tons, distributed among many nations, making it one of the most heavily imported and exported chemicals. Commercially produced PS usually possesses a broad molar mass distribution, often with a substantial oligomeric component. The latter can significantly affect processing and end-use, in addition to having potentially hazardous health effects and to impacting the polymer’s export classification by regulatory agencies. Quantitation of the oligomeric region of polymers by size-exclusion chromatography with concentration-sensitive and/or static light scattering detection is complicated by the non-constancy of the specific refractive index increment (∂<i>n</i>/∂<i>c</i>) in this region, which affects the calculated amount (mass fraction) of oligomer in a polymer, molar mass averages, and related conclusions regarding macromolecular properties. Here, a multi-detector SEC approach including differential refractometry, multi-angle static light scattering, and differential viscometry has been applied to determining the ∂<i>n</i>/∂<i>c</i> of <i>n-</i>butyl terminated styrene oligomers at each degree of polymerization from monomer to hexamer, and also of a hexadecamer. Large changes in this parameter from one degree of polymerization to the next are observed, including but not restricted to the fact that the ∂<i>n</i>/∂<i>c</i> of the monomer is less than half that of PS polymer at identical experimental conditions. As part of this study, the individual effects of injection volume, flow rate, and temperature on chromatographic resolution were examined. Incorporation of the on-line viscometer allowed for accurate determination of the intrinsic viscosity and viscometric radius of the monomer and oligomers.</p></div>","PeriodicalId":518,"journal":{"name":"Chromatographia","volume":"87 2","pages":"95 - 104"},"PeriodicalIF":1.2000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10337-023-04306-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chromatographia","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10337-023-04306-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Worldwide polystyrene (PS) production in 2020 was approximately 27 million metric tons, distributed among many nations, making it one of the most heavily imported and exported chemicals. Commercially produced PS usually possesses a broad molar mass distribution, often with a substantial oligomeric component. The latter can significantly affect processing and end-use, in addition to having potentially hazardous health effects and to impacting the polymer’s export classification by regulatory agencies. Quantitation of the oligomeric region of polymers by size-exclusion chromatography with concentration-sensitive and/or static light scattering detection is complicated by the non-constancy of the specific refractive index increment (∂n/∂c) in this region, which affects the calculated amount (mass fraction) of oligomer in a polymer, molar mass averages, and related conclusions regarding macromolecular properties. Here, a multi-detector SEC approach including differential refractometry, multi-angle static light scattering, and differential viscometry has been applied to determining the ∂n/∂c of n-butyl terminated styrene oligomers at each degree of polymerization from monomer to hexamer, and also of a hexadecamer. Large changes in this parameter from one degree of polymerization to the next are observed, including but not restricted to the fact that the ∂n/∂c of the monomer is less than half that of PS polymer at identical experimental conditions. As part of this study, the individual effects of injection volume, flow rate, and temperature on chromatographic resolution were examined. Incorporation of the on-line viscometer allowed for accurate determination of the intrinsic viscosity and viscometric radius of the monomer and oligomers.
期刊介绍:
Separation sciences, in all their various forms such as chromatography, field-flow fractionation, and electrophoresis, provide some of the most powerful techniques in analytical chemistry and are applied within a number of important application areas, including archaeology, biotechnology, clinical, environmental, food, medical, petroleum, pharmaceutical, polymer and biopolymer research. Beyond serving analytical purposes, separation techniques are also used for preparative and process-scale applications. The scope and power of separation sciences is significantly extended by combination with spectroscopic detection methods (e.g., laser-based approaches, nuclear-magnetic resonance, Raman, chemiluminescence) and particularly, mass spectrometry, to create hyphenated techniques. In addition to exciting new developments in chromatography, such as ultra high-pressure systems, multidimensional separations, and high-temperature approaches, there have also been great advances in hybrid methods combining chromatography and electro-based separations, especially on the micro- and nanoscale. Integrated biological procedures (e.g., enzymatic, immunological, receptor-based assays) can also be part of the overall analytical process.