Xinhua Dai, Anjie Liu, Junhong Liu, Mengjun Zhan, Yuanyuan Liu, Wenchi Ke, Lei Shi, Xinyu Huang, Hu Chen, Zhenhua Deng, Fei Fan
{"title":"Machine Learning Supported the Modified Gustafson’s Criteria for Dental Age Estimation in Southwest China","authors":"Xinhua Dai, Anjie Liu, Junhong Liu, Mengjun Zhan, Yuanyuan Liu, Wenchi Ke, Lei Shi, Xinyu Huang, Hu Chen, Zhenhua Deng, Fei Fan","doi":"10.1007/s10278-023-00956-0","DOIUrl":null,"url":null,"abstract":"<p>Adult age estimation is one of the most challenging problems in forensic science and physical anthropology. In this study, we aimed to develop and evaluate machine learning (ML) methods based on the modified Gustafson’s criteria for dental age estimation. In this retrospective study, a total of 851 orthopantomograms were collected from patients aged 15 to 40 years old. The secondary dentin formation (SE), periodontal recession (PE), and attrition (AT) of four mandibular premolars were analyzed according to the modified Gustafson’s criteria. Ten ML models were generated and compared for age estimation. The partial least squares regressor outperformed other models in males with a mean absolute error (MAE) of 4.151 years. The support vector regressor (MAE = 3.806 years) showed good performance in females. The accuracy of ML models is better than the single-tooth model provided in the previous studies (MAE = 4.747 years in males and MAE = 4.957 years in females). The Shapley additive explanations method was used to reveal the importance of the 12 features in ML models and found that AT and PE are the most influential in age estimation. The findings suggest that the modified Gustafson method can be effectively employed for adult age estimation in the southwest Chinese population. Furthermore, this study highlights the potential of machine learning models to assist experts in achieving accurate and interpretable age estimation.</p>","PeriodicalId":50214,"journal":{"name":"Journal of Digital Imaging","volume":"118 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Digital Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10278-023-00956-0","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Adult age estimation is one of the most challenging problems in forensic science and physical anthropology. In this study, we aimed to develop and evaluate machine learning (ML) methods based on the modified Gustafson’s criteria for dental age estimation. In this retrospective study, a total of 851 orthopantomograms were collected from patients aged 15 to 40 years old. The secondary dentin formation (SE), periodontal recession (PE), and attrition (AT) of four mandibular premolars were analyzed according to the modified Gustafson’s criteria. Ten ML models were generated and compared for age estimation. The partial least squares regressor outperformed other models in males with a mean absolute error (MAE) of 4.151 years. The support vector regressor (MAE = 3.806 years) showed good performance in females. The accuracy of ML models is better than the single-tooth model provided in the previous studies (MAE = 4.747 years in males and MAE = 4.957 years in females). The Shapley additive explanations method was used to reveal the importance of the 12 features in ML models and found that AT and PE are the most influential in age estimation. The findings suggest that the modified Gustafson method can be effectively employed for adult age estimation in the southwest Chinese population. Furthermore, this study highlights the potential of machine learning models to assist experts in achieving accurate and interpretable age estimation.
期刊介绍:
The Journal of Digital Imaging (JDI) is the official peer-reviewed journal of the Society for Imaging Informatics in Medicine (SIIM). JDI’s goal is to enhance the exchange of knowledge encompassed by the general topic of Imaging Informatics in Medicine such as research and practice in clinical, engineering, and information technologies and techniques in all medical imaging environments. JDI topics are of interest to researchers, developers, educators, physicians, and imaging informatics professionals.
Suggested Topics
PACS and component systems; imaging informatics for the enterprise; image-enabled electronic medical records; RIS and HIS; digital image acquisition; image processing; image data compression; 3D, visualization, and multimedia; speech recognition; computer-aided diagnosis; facilities design; imaging vocabularies and ontologies; Transforming the Radiological Interpretation Process (TRIP™); DICOM and other standards; workflow and process modeling and simulation; quality assurance; archive integrity and security; teleradiology; digital mammography; and radiological informatics education.