Numerical investigation on high-temperature thermoacoustic heat pump with a work recovery displacer

IF 1.7 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Science and Technology for the Built Environment Pub Date : 2024-01-08 DOI:10.1080/23744731.2023.2299177
Tian YE, Xi Chen, Shenglin Zhu, Yankang Wu, Pu Zheng
{"title":"Numerical investigation on high-temperature thermoacoustic heat pump with a work recovery displacer","authors":"Tian YE, Xi Chen, Shenglin Zhu, Yankang Wu, Pu Zheng","doi":"10.1080/23744731.2023.2299177","DOIUrl":null,"url":null,"abstract":"Spacecraft commonly dissipate heat into space through radiation. In the current development of spacecraft radiators, two major challenges are encountered: effective dissipation of heat in high-temp...","PeriodicalId":21556,"journal":{"name":"Science and Technology for the Built Environment","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology for the Built Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/23744731.2023.2299177","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Spacecraft commonly dissipate heat into space through radiation. In the current development of spacecraft radiators, two major challenges are encountered: effective dissipation of heat in high-temp...
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带功回收置换器的高温热声热泵数值研究
航天器通常通过辐射向太空散热。在目前的航天器散热器开发过程中,遇到了两大挑战:如何在高温环境下有效散热;如何在低温环境下有效散热。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science and Technology for the Built Environment
Science and Technology for the Built Environment THERMODYNAMICSCONSTRUCTION & BUILDING TECH-CONSTRUCTION & BUILDING TECHNOLOGY
CiteScore
4.30
自引率
5.30%
发文量
78
期刊介绍: Science and Technology for the Built Environment (formerly HVAC&R Research) is ASHRAE’s archival research publication, offering comprehensive reporting of original research in science and technology related to the stationary and mobile built environment, including indoor environmental quality, thermodynamic and energy system dynamics, materials properties, refrigerants, renewable and traditional energy systems and related processes and concepts, integrated built environmental system design approaches and tools, simulation approaches and algorithms, building enclosure assemblies, and systems for minimizing and regulating space heating and cooling modes. The journal features review articles that critically assess existing literature and point out future research directions.
期刊最新文献
Assessing the emissions reduction potential and economic feasibility of small-scale (<100 kWe) combined heat and power systems with thermal storage for multi-family residential applications in the United States Advanced co-simulation framework for assessing the interplay between occupant behaviors and demand flexibility in commercial buildings Ground heat exchanger design tool with RowWise placement of boreholes Socioeconomic factors influencing residential occupancy trends during and post COVID pandemic Buildings XV Conference Special Issue
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1