Shasha Zheng, Hao Wei, Hong Cheng, Yanru Qi, Yajun Gu, Xiaofeng Ma, Jiaqiang Sun, Fanglei Ye, Fangfang Guo, Cheng Cheng
{"title":"Advances in nerve guidance conduits for peripheral nerve repair and regeneration.","authors":"Shasha Zheng, Hao Wei, Hong Cheng, Yanru Qi, Yajun Gu, Xiaofeng Ma, Jiaqiang Sun, Fanglei Ye, Fangfang Guo, Cheng Cheng","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Peripheral nerve injury (PNI) can cause partial or total motor and sensory nerve function, leading to physical disability and nerve pain that severely affects patients' quality of life. Autologous nerve transplantation is currently the clinically recognized gold standard, but due to its inherent limitations, researchers have been searching for alternative treatments. Nerve guidance conduits (NGCs) have attracted much attention as a favorable alternative to promote the repair and regeneration of damaged peripheral nerves. In this review, we provide an overview of the anatomy of peripheral nerves, peripheral nerve injury and repair, and current treatment methods. Importantly, different design strategies of NGCs used for the treatment of PNI and their applications in PNI repair are highlighted. Finally, an outlook on the future development and challenges of NGCs is presented.</p>","PeriodicalId":7657,"journal":{"name":"American journal of stem cells","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10776341/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of stem cells","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Peripheral nerve injury (PNI) can cause partial or total motor and sensory nerve function, leading to physical disability and nerve pain that severely affects patients' quality of life. Autologous nerve transplantation is currently the clinically recognized gold standard, but due to its inherent limitations, researchers have been searching for alternative treatments. Nerve guidance conduits (NGCs) have attracted much attention as a favorable alternative to promote the repair and regeneration of damaged peripheral nerves. In this review, we provide an overview of the anatomy of peripheral nerves, peripheral nerve injury and repair, and current treatment methods. Importantly, different design strategies of NGCs used for the treatment of PNI and their applications in PNI repair are highlighted. Finally, an outlook on the future development and challenges of NGCs is presented.