David Wragg, Wengang Zhang, Sarah Peterson, Murthy Yerramilli, Richard Mellanby, Jeffrey J. Schoenebeck, Dylan N. Clements
{"title":"A cautionary tale of low-pass sequencing and imputation with respect to haplotype accuracy","authors":"David Wragg, Wengang Zhang, Sarah Peterson, Murthy Yerramilli, Richard Mellanby, Jeffrey J. Schoenebeck, Dylan N. Clements","doi":"10.1186/s12711-024-00875-w","DOIUrl":null,"url":null,"abstract":"Low-pass whole-genome sequencing and imputation offer significant cost savings, enabling substantial increases in sample size and statistical power. This approach is particularly promising in livestock breeding, providing an affordable means of screening individuals for deleterious alleles or calculating genomic breeding values. Consequently, it may also be of value in companion animal genomics to support pedigree breeding. We sought to evaluate in dogs the impact of low coverage sequencing and reference-guided imputation on genotype concordance and association analyses. DNA isolated from saliva of 30 Labrador retrievers was sequenced at low (0.9X and 3.8X) and high (43.5X) coverage, and down-sampled from 43.5X to 9.6X and 17.4X. Genotype imputation was performed using a diverse reference panel (1021 dogs), and two subsets of the former panel (256 dogs each) where one had an excess of Labrador retrievers relative to other breeds. We observed little difference in imputed genotype concordance between reference panels. Association analyses for a locus acting as a disease proxy were performed using single-marker (GEMMA) and haplotype-based (XP-EHH) tests. GEMMA results were highly correlated (r ≥ 0.97) between 43.5X and ≥ 3.8X depths of coverage, while for 0.9X the correlation was lower (r ≤ 0.8). XP-EHH results were less well correlated, with r ranging from 0.58 (0.9X) to 0.88 (17.4X). Across a random sample of 10,000 genomic regions averaging 17 kb in size, we observed a median of three haplotypes per dog across the sequencing depths, with 5% of the regions returning more than eight haplotypes. Inspection of one such region revealed genotype and phasing inconsistencies across sequencing depths. We demonstrate that saliva-derived canine DNA is suitable for whole-genome sequencing, highlighting the feasibility of client-based sampling. Low-pass sequencing and imputation require caution as incorrect allele assignments result when the subject possesses alleles that are absent in the reference panel. Larger panels have the capacity for greater allelic diversity, which should reduce the potential for imputation error. Although low-pass sequencing can accurately impute allele dosage, we highlight issues with phasing accuracy that impact haplotype-based analyses. Consequently, if accurately phased genotypes are required for analyses, we advocate sequencing at high depth (> 20X).","PeriodicalId":55120,"journal":{"name":"Genetics Selection Evolution","volume":"94 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics Selection Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12711-024-00875-w","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Low-pass whole-genome sequencing and imputation offer significant cost savings, enabling substantial increases in sample size and statistical power. This approach is particularly promising in livestock breeding, providing an affordable means of screening individuals for deleterious alleles or calculating genomic breeding values. Consequently, it may also be of value in companion animal genomics to support pedigree breeding. We sought to evaluate in dogs the impact of low coverage sequencing and reference-guided imputation on genotype concordance and association analyses. DNA isolated from saliva of 30 Labrador retrievers was sequenced at low (0.9X and 3.8X) and high (43.5X) coverage, and down-sampled from 43.5X to 9.6X and 17.4X. Genotype imputation was performed using a diverse reference panel (1021 dogs), and two subsets of the former panel (256 dogs each) where one had an excess of Labrador retrievers relative to other breeds. We observed little difference in imputed genotype concordance between reference panels. Association analyses for a locus acting as a disease proxy were performed using single-marker (GEMMA) and haplotype-based (XP-EHH) tests. GEMMA results were highly correlated (r ≥ 0.97) between 43.5X and ≥ 3.8X depths of coverage, while for 0.9X the correlation was lower (r ≤ 0.8). XP-EHH results were less well correlated, with r ranging from 0.58 (0.9X) to 0.88 (17.4X). Across a random sample of 10,000 genomic regions averaging 17 kb in size, we observed a median of three haplotypes per dog across the sequencing depths, with 5% of the regions returning more than eight haplotypes. Inspection of one such region revealed genotype and phasing inconsistencies across sequencing depths. We demonstrate that saliva-derived canine DNA is suitable for whole-genome sequencing, highlighting the feasibility of client-based sampling. Low-pass sequencing and imputation require caution as incorrect allele assignments result when the subject possesses alleles that are absent in the reference panel. Larger panels have the capacity for greater allelic diversity, which should reduce the potential for imputation error. Although low-pass sequencing can accurately impute allele dosage, we highlight issues with phasing accuracy that impact haplotype-based analyses. Consequently, if accurately phased genotypes are required for analyses, we advocate sequencing at high depth (> 20X).
期刊介绍:
Genetics Selection Evolution invites basic, applied and methodological content that will aid the current understanding and the utilization of genetic variability in domestic animal species. Although the focus is on domestic animal species, research on other species is invited if it contributes to the understanding of the use of genetic variability in domestic animals. Genetics Selection Evolution publishes results from all levels of study, from the gene to the quantitative trait, from the individual to the population, the breed or the species. Contributions concerning both the biological approach, from molecular genetics to quantitative genetics, as well as the mathematical approach, from population genetics to statistics, are welcome. Specific areas of interest include but are not limited to: gene and QTL identification, mapping and characterization, analysis of new phenotypes, high-throughput SNP data analysis, functional genomics, cytogenetics, genetic diversity of populations and breeds, genetic evaluation, applied and experimental selection, genomic selection, selection efficiency, and statistical methodology for the genetic analysis of phenotypes with quantitative and mixed inheritance.