Detection of hidden intronic DDC variant in aromatic L-amino acid decarboxylase deficiency by adaptive sampling

IF 2.6 3区 生物学 Q2 GENETICS & HEREDITY Journal of Human Genetics Pub Date : 2024-01-12 DOI:10.1038/s10038-023-01217-2
Eriko Koshimizu, Mitsuhiro Kato, Kazuharu Misawa, Yuri Uchiyama, Naomi Tsuchida, Kohei Hamanaka, Atsushi Fujita, Takeshi Mizuguchi, Satoko Miyatake, Naomichi Matsumoto
{"title":"Detection of hidden intronic DDC variant in aromatic L-amino acid decarboxylase deficiency by adaptive sampling","authors":"Eriko Koshimizu, Mitsuhiro Kato, Kazuharu Misawa, Yuri Uchiyama, Naomi Tsuchida, Kohei Hamanaka, Atsushi Fujita, Takeshi Mizuguchi, Satoko Miyatake, Naomichi Matsumoto","doi":"10.1038/s10038-023-01217-2","DOIUrl":null,"url":null,"abstract":"Aromatic l-amino acid decarboxylase (AADC) deficiency is an autosomal recessive neurotransmitter disorder caused by pathogenic DOPA decarboxylase (DDC) variants. We previously reported Japanese siblings with AADC deficiency, which was confirmed by the lack of enzyme activity; however, only a heterozygous missense variant was detected. We therefore performed targeted long-read sequencing by adaptive sampling to identify any missing variants. Haplotype phasing and variant calling identified a novel deep intronic variant (c.714+255 C > A), which was predicted to potentially activate the noncanonical splicing acceptor site. Minigene assay revealed that wild-type and c.714+255 C > A alleles had different impacts on splicing. Three transcripts, including the canonical transcript, were detected from the wild-type allele, but only the noncanonical cryptic exon was produced from the variant allele, indicating that c.714+255 C > A was pathogenic. Target long-read sequencing may be used to detect hidden pathogenic variants in unresolved autosomal recessive cases with only one disclosed hit variant.","PeriodicalId":16077,"journal":{"name":"Journal of Human Genetics","volume":"69 3-4","pages":"153-157"},"PeriodicalIF":2.6000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s10038-023-01217-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Aromatic l-amino acid decarboxylase (AADC) deficiency is an autosomal recessive neurotransmitter disorder caused by pathogenic DOPA decarboxylase (DDC) variants. We previously reported Japanese siblings with AADC deficiency, which was confirmed by the lack of enzyme activity; however, only a heterozygous missense variant was detected. We therefore performed targeted long-read sequencing by adaptive sampling to identify any missing variants. Haplotype phasing and variant calling identified a novel deep intronic variant (c.714+255 C > A), which was predicted to potentially activate the noncanonical splicing acceptor site. Minigene assay revealed that wild-type and c.714+255 C > A alleles had different impacts on splicing. Three transcripts, including the canonical transcript, were detected from the wild-type allele, but only the noncanonical cryptic exon was produced from the variant allele, indicating that c.714+255 C > A was pathogenic. Target long-read sequencing may be used to detect hidden pathogenic variants in unresolved autosomal recessive cases with only one disclosed hit variant.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过适应性取样检测芳香族 L-氨基酸脱羧酶缺乏症中隐藏的内含子 DDC 变异。
芳香族l-氨基酸脱羧酶(AADC)缺乏症是一种常染色体隐性神经递质紊乱,由致病性DOPA脱羧酶(DDC)变体引起。我们以前曾报道过患有 AADC 缺乏症的日本兄妹,他们因缺乏酶活性而被确诊;然而,只检测到了一个杂合子错义变体。因此,我们通过自适应采样进行了有针对性的长线程测序,以确定任何缺失的变异。单倍型分期和变异调用确定了一个新的深内含子变异(c.714+255 C > A),据预测,该变异可能会激活非规范剪接接受位点。迷你基因测定显示,野生型和 c.714+255 C > A 等位基因对剪接的影响不同。从野生型等位基因中检测到三个转录本,包括规范转录本,但从变异等位基因中只产生了非规范隐性外显子,这表明 c.714+255 C > A 是致病的。靶向长读测序可用于检测仅有一个已知变异的常染色体隐性病例中隐藏的致病变异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Human Genetics
Journal of Human Genetics 生物-遗传学
CiteScore
7.20
自引率
0.00%
发文量
101
审稿时长
4-8 weeks
期刊介绍: The Journal of Human Genetics is an international journal publishing articles on human genetics, including medical genetics and human genome analysis. It covers all aspects of human genetics, including molecular genetics, clinical genetics, behavioral genetics, immunogenetics, pharmacogenomics, population genetics, functional genomics, epigenetics, genetic counseling and gene therapy. Articles on the following areas are especially welcome: genetic factors of monogenic and complex disorders, genome-wide association studies, genetic epidemiology, cancer genetics, personal genomics, genotype-phenotype relationships and genome diversity.
期刊最新文献
Preimplantation genetic testing for inborn errors of metabolism: observations from a reproductive genetic laboratory in China. Identification of biallelic intronic EPM2A mutations in a Lafora disease kindred. Expanding the spectrum of HSPB8-related myopathy: a novel mutation causing atypical pediatric-onset axial and limb-girdle involvement with autophagy abnormalities and molecular dynamics studies. Novel variants in DNAH9 are present in two infertile patients with severe asthenospermia. Homozygous synonymous FAM111A variant underlies an autosomal recessive form of Kenny-Caffey syndrome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1