Ginsenoside Rg1 attenuates dextran sodium sulfate-induced ulcerative colitis in mice.

IF 1.9 4区 医学 Q3 PHYSIOLOGY Physiological research Pub Date : 2023-12-31
Y Chen, Q Zhang, L Sun, H Liu, J Feng, J Li, Z Wang
{"title":"Ginsenoside Rg1 attenuates dextran sodium sulfate-induced ulcerative colitis in mice.","authors":"Y Chen, Q Zhang, L Sun, H Liu, J Feng, J Li, Z Wang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Ulceration colitis (UC) is a chronic and recurrent inflammatory disorder in the gastro-intestinal tract. The purpose of our study is to explore the potential mechanisms of ginsenoside Rg1 (GS Rg1) on dextran sulfate sodium (DSS)-induced colitis in mice and lipopolysaccharide (LPS)-induced RAW 264.7 cells. Acute colitis was induced in male C57BL/6 mice. In vitro model of LPS-induced RAW 264.7 cells to simulate enteritis model. The disease activity index (DAI), colon length, body weight and histopathological analysis were performed in vivo. Pro-inflammatory cytokines and markers for oxidative and anti-oxidative stress, MPO level were measured in vivo and in vitro. Nuclear erythroid 2-related factor 2 (Nrf2) and NF-?B p65 protein levels were analyzed using western blotting. Our results indicated that the UC models were established successfully by drinking DSS water. GS Rg1 significantly attenuated UC-related symptoms, including preventing weight loss, decreasing DAI scores, and increasing colon length. GS Rg1 ameliorated the DSS-induced oxidative stress. IL-1beta, IL-6, and TNF-alpha levels were significantly increased in serum and cell supernatant effectively, while treatment with the GS Rg1 significantly reduced these factors. GS Rg1 reduced MPO content in the colon. GS Rg1 treatment increased SOD and decreased MDA levels in the serum, colon, and cell supernatant. GS Rg1 restored the Nrf-2/HO-1/NF-?B pathway in RAW 264.7 cells and UC mice, and these changes were blocked by Nrf-2 siRNA. Overall, GS Rg1 ameliorated inflammation and oxidative stress in colitis via Nrf-2/HO-1/NF-kappaB pathway. Thus, GS Rg1 could serve as a potential therapeutic agent for the treatment of UC.</p>","PeriodicalId":20235,"journal":{"name":"Physiological research","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10805260/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological research","FirstCategoryId":"3","ListUrlMain":"","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ulceration colitis (UC) is a chronic and recurrent inflammatory disorder in the gastro-intestinal tract. The purpose of our study is to explore the potential mechanisms of ginsenoside Rg1 (GS Rg1) on dextran sulfate sodium (DSS)-induced colitis in mice and lipopolysaccharide (LPS)-induced RAW 264.7 cells. Acute colitis was induced in male C57BL/6 mice. In vitro model of LPS-induced RAW 264.7 cells to simulate enteritis model. The disease activity index (DAI), colon length, body weight and histopathological analysis were performed in vivo. Pro-inflammatory cytokines and markers for oxidative and anti-oxidative stress, MPO level were measured in vivo and in vitro. Nuclear erythroid 2-related factor 2 (Nrf2) and NF-?B p65 protein levels were analyzed using western blotting. Our results indicated that the UC models were established successfully by drinking DSS water. GS Rg1 significantly attenuated UC-related symptoms, including preventing weight loss, decreasing DAI scores, and increasing colon length. GS Rg1 ameliorated the DSS-induced oxidative stress. IL-1beta, IL-6, and TNF-alpha levels were significantly increased in serum and cell supernatant effectively, while treatment with the GS Rg1 significantly reduced these factors. GS Rg1 reduced MPO content in the colon. GS Rg1 treatment increased SOD and decreased MDA levels in the serum, colon, and cell supernatant. GS Rg1 restored the Nrf-2/HO-1/NF-?B pathway in RAW 264.7 cells and UC mice, and these changes were blocked by Nrf-2 siRNA. Overall, GS Rg1 ameliorated inflammation and oxidative stress in colitis via Nrf-2/HO-1/NF-kappaB pathway. Thus, GS Rg1 could serve as a potential therapeutic agent for the treatment of UC.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人参皂苷 Rg1 可减轻右旋糖酐硫酸钠诱发的小鼠溃疡性结肠炎。
溃疡性结肠炎(UC)是一种慢性、反复发作的胃肠道炎症性疾病。我们的研究旨在探讨人参皂苷 Rg1(GS Rg1)对葡聚糖硫酸钠(DSS)诱导的小鼠结肠炎和脂多糖(LPS)诱导的 RAW 264.7 细胞的潜在作用机制。急性结肠炎由雄性 C57BL/6 小鼠诱发。LPS 诱导 RAW 264.7 细胞的体外模型模拟肠炎模型。在体内进行疾病活动指数(DAI)、结肠长度、体重和组织病理学分析。在体内和体外测量了促炎细胞因子、氧化应激和抗氧化应激标记物、MPO水平。采用免疫印迹法分析了核红细胞2相关因子2(Nrf2)和NF-?B p65蛋白水平。结果表明,饮用DSS水可成功建立UC模型。GS Rg1能明显减轻UC相关症状,包括防止体重下降、降低DAI评分和增加结肠长度。GS Rg1能改善DSS诱导的氧化应激。血清和细胞上清液中的IL-1β、IL-6和TNF-α水平明显升高,而使用GS Rg1能显著降低这些因子的水平。GS Rg1 降低了结肠中 MPO 的含量。GS Rg1 能提高血清、结肠和细胞上清液中的 SOD 含量,降低 MDA 含量。GS Rg1 恢复了 RAW 264.7 细胞和 UC 小鼠的 Nrf-2/HO-1/NF-?B 通路,Nrf-2 siRNA 阻断了这些变化。总之,GS Rg1可通过Nrf-2/HO-1/NF-kappaB途径改善结肠炎的炎症和氧化应激。因此,GS Rg1可作为治疗UC的潜在药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physiological research
Physiological research 医学-生理学
CiteScore
4.00
自引率
4.80%
发文量
108
审稿时长
3 months
期刊介绍: Physiological Research is a peer reviewed Open Access journal that publishes articles on normal and pathological physiology, biochemistry, biophysics, and pharmacology. Authors can submit original, previously unpublished research articles, review articles, rapid or short communications. Instructions for Authors - Respect the instructions carefully when submitting your manuscript. Submitted manuscripts or revised manuscripts that do not follow these Instructions will not be included into the peer-review process. The articles are available in full versions as pdf files beginning with volume 40, 1991. The journal publishes the online Ahead of Print /Pre-Press version of the articles that are searchable in Medline and can be cited.
期刊最新文献
Influence of Lipid Class Used for Omega-3 Fatty Acid Supplementation on Liver Fat Accumulation in MASLD. Research on Experimental Hypertension in Prague (1966-2009). Variability of Clinical Phenotypes Caused by Isolated Defects of Mitochondrial ATP Synthase. 3-N-Butylphthalide Confers Antiarrhythmic Features in Ischemia/Reperfusion Injury of Diabetic Heart by Targeting Mitochondria-Endoplasmic Reticulum Network and Inhibiting Oxidative Stress and Inflammation. Baicalin Ameliorates Cartilage Injury in Rats With Osteoarthritis via Modulating miR-766-3p/AIFM1 Axis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1