Delving into Identify-Emphasize Paradigm for Combating Unknown Bias

IF 11.6 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Computer Vision Pub Date : 2024-01-13 DOI:10.1007/s11263-023-01969-6
Bowen Zhao, Chen Chen, Qian-Wei Wang, Anfeng He, Shu-Tao Xia
{"title":"Delving into Identify-Emphasize Paradigm for Combating Unknown Bias","authors":"Bowen Zhao, Chen Chen, Qian-Wei Wang, Anfeng He, Shu-Tao Xia","doi":"10.1007/s11263-023-01969-6","DOIUrl":null,"url":null,"abstract":"<p>Dataset biases are notoriously detrimental to model robustness and generalization. The identify-emphasize paradigm appears to be effective in dealing with unknown biases. However, we discover that it is still plagued by two challenges: A, the quality of the identified bias-conflicting samples is far from satisfactory; B, the emphasizing strategies only produce suboptimal performance. In this paper, for challenge A, we propose an effective bias-conflicting scoring method (ECS) to boost the identification accuracy, along with two practical strategies — peer-picking and epoch-ensemble. For challenge B, we point out that the gradient contribution statistics can be a reliable indicator to inspect whether the optimization is dominated by bias-aligned samples. Then, we propose gradient alignment (GA), which employs gradient statistics to balance the contributions of the mined bias-aligned and bias-conflicting samples dynamically throughout the learning process, forcing models to leverage intrinsic features to make fair decisions. Furthermore, we incorporate self-supervised (SS) pretext tasks into training, which enable models to exploit richer features rather than the simple shortcuts, resulting in more robust models. Experiments are conducted on multiple datasets in various settings, demonstrating that the proposed solution can mitigate the impact of unknown biases and achieve state-of-the-art performance.\n</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"1 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-023-01969-6","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Dataset biases are notoriously detrimental to model robustness and generalization. The identify-emphasize paradigm appears to be effective in dealing with unknown biases. However, we discover that it is still plagued by two challenges: A, the quality of the identified bias-conflicting samples is far from satisfactory; B, the emphasizing strategies only produce suboptimal performance. In this paper, for challenge A, we propose an effective bias-conflicting scoring method (ECS) to boost the identification accuracy, along with two practical strategies — peer-picking and epoch-ensemble. For challenge B, we point out that the gradient contribution statistics can be a reliable indicator to inspect whether the optimization is dominated by bias-aligned samples. Then, we propose gradient alignment (GA), which employs gradient statistics to balance the contributions of the mined bias-aligned and bias-conflicting samples dynamically throughout the learning process, forcing models to leverage intrinsic features to make fair decisions. Furthermore, we incorporate self-supervised (SS) pretext tasks into training, which enable models to exploit richer features rather than the simple shortcuts, resulting in more robust models. Experiments are conducted on multiple datasets in various settings, demonstrating that the proposed solution can mitigate the impact of unknown biases and achieve state-of-the-art performance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深入研究 "识别-强调 "范式,消除未知偏见
数据集的偏差对模型的稳健性和泛化非常不利。识别-强调范式在处理未知偏差方面似乎很有效。然而,我们发现它仍然面临两个挑战:A. 识别出的偏差冲突样本的质量远不能令人满意;B. 强调策略只能产生次优性能。在本文中,针对挑战 A,我们提出了一种有效的偏差冲突评分方法(ECS)来提高识别准确率,同时还提出了两种实用的策略--同伴挑选和历时集合。对于挑战 B,我们指出梯度贡献统计可以作为一个可靠的指标,用于检测优化是否由偏差对齐样本主导。然后,我们提出了梯度对齐(GA),它利用梯度统计在整个学习过程中动态平衡挖掘出的偏差对齐样本和偏差冲突样本的贡献,迫使模型利用内在特征做出公平决策。此外,我们还在训练中加入了自我监督(SS)借口任务,使模型能够利用更丰富的特征而不是简单的捷径,从而建立更稳健的模型。我们在各种环境下的多个数据集上进行了实验,证明所提出的解决方案可以减轻未知偏差的影响,并实现最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Computer Vision
International Journal of Computer Vision 工程技术-计算机:人工智能
CiteScore
29.80
自引率
2.10%
发文量
163
审稿时长
6 months
期刊介绍: The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs. Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision. Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community. Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas. In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives. The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research. Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.
期刊最新文献
CS-CoLBP: Cross-Scale Co-occurrence Local Binary Pattern for Image Classification Warping the Residuals for Image Editing with StyleGAN Pulling Target to Source: A New Perspective on Domain Adaptive Semantic Segmentation Feature Matching via Graph Clustering with Local Affine Consensus View-Invariant Skeleton Action Representation Learning via Motion Retargeting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1