Detection of C6H6, CO2, and H2S gases on arsenic (As) and cobalt (Co) doped quantum dots (QDs) nanostructured materials

B. Inah, Emmanuel E. D. Okon, Bitrus H. Andrew, Maxell-Borjor A. Eba, Henry O. Edet, T. Unimuke, T. Gber, E. Agwamba, I. Benjamin, Adedapo S. Adeyinka, H. Louis
{"title":"Detection of C6H6, CO2, and H2S gases on arsenic (As) and cobalt (Co) doped quantum dots (QDs) nanostructured materials","authors":"B. Inah, Emmanuel E. D. Okon, Bitrus H. Andrew, Maxell-Borjor A. Eba, Henry O. Edet, T. Unimuke, T. Gber, E. Agwamba, I. Benjamin, Adedapo S. Adeyinka, H. Louis","doi":"10.1515/zpch-2023-0451","DOIUrl":null,"url":null,"abstract":"Abstract Gas sensors exhibit significant potential due to their widespread use in various applications, such as food packaging, indoor air quality assessment, and real-time monitoring of man-made gas emissions to mitigate global warming. The utilization of nanostructured materials for sensor and adsorbent surfaces has seen remarkable growth over time, though substantial efforts are still needed to develop more efficient adsorbents. Consequently, this study investigates the viability of metal-doped quantum dots (QDs) as prospective gas-sensing and adsorption materials. Density functional theory (DFT) calculations employing the 6-311 + G(d,p) basis set and three functionals (B3LYP, B3LYP-GD3(BJ), and ɷB97XD) were utilized for this investigation. Three environmentally and health-significant gases (C6H6, CO2, and H2S) were chosen as adsorbates on arsenic (As) and cobalt (Co) functionalized QDs to assess the performance and sensing capabilities of resulting QD surfaces. The analysis encompassed computation of adsorption energy, thermodynamic properties, non-covalent interactions, natural bond orbital analysis, and other topological aspects for both the surfaces and gases. The outcomes indicate that the GP_As functionalized surface exhibits a lower energy gap, rendering it more reactive and sensitive toward the respective gases (C6H6, CO2, and H2S). Moreover, the calculated adsorption energies of the investigated systems indicate thermodynamic favorability and spontaneity. Notably, our findings suggest that QD_As surfaces possess superior adsorption potential for H2S compared to the other gases examined; nonetheless, all studied QD surfaces demonstrate significant adsorption capacities for C6H6, CO2, and H2S gases.","PeriodicalId":506520,"journal":{"name":"Zeitschrift für Physikalische Chemie","volume":"41 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für Physikalische Chemie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/zpch-2023-0451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Gas sensors exhibit significant potential due to their widespread use in various applications, such as food packaging, indoor air quality assessment, and real-time monitoring of man-made gas emissions to mitigate global warming. The utilization of nanostructured materials for sensor and adsorbent surfaces has seen remarkable growth over time, though substantial efforts are still needed to develop more efficient adsorbents. Consequently, this study investigates the viability of metal-doped quantum dots (QDs) as prospective gas-sensing and adsorption materials. Density functional theory (DFT) calculations employing the 6-311 + G(d,p) basis set and three functionals (B3LYP, B3LYP-GD3(BJ), and ɷB97XD) were utilized for this investigation. Three environmentally and health-significant gases (C6H6, CO2, and H2S) were chosen as adsorbates on arsenic (As) and cobalt (Co) functionalized QDs to assess the performance and sensing capabilities of resulting QD surfaces. The analysis encompassed computation of adsorption energy, thermodynamic properties, non-covalent interactions, natural bond orbital analysis, and other topological aspects for both the surfaces and gases. The outcomes indicate that the GP_As functionalized surface exhibits a lower energy gap, rendering it more reactive and sensitive toward the respective gases (C6H6, CO2, and H2S). Moreover, the calculated adsorption energies of the investigated systems indicate thermodynamic favorability and spontaneity. Notably, our findings suggest that QD_As surfaces possess superior adsorption potential for H2S compared to the other gases examined; nonetheless, all studied QD surfaces demonstrate significant adsorption capacities for C6H6, CO2, and H2S gases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
砷 (As) 和钴 (Co) 掺杂量子点 (QDs) 纳米结构材料上的 C6H6、CO2 和 H2S 气体检测
摘要 气体传感器在食品包装、室内空气质量评估和实时监测人造气体排放以减缓全球变暖等各种应用中得到广泛应用,因而具有巨大的潜力。随着时间的推移,将纳米结构材料用于传感器和吸附剂表面的研究取得了显著的进展,但仍需付出巨大努力才能开发出更高效的吸附剂。因此,本研究探讨了掺金属量子点(QDs)作为前瞻性气体传感和吸附材料的可行性。本研究采用 6-311 + G(d,p) 基集和三种函数(B3LYP、B3LYP-GD3(BJ) 和 ɷB97XD)进行密度泛函理论(DFT)计算。选择了三种对环境和健康有重要影响的气体(C6H6、CO2 和 H2S)作为砷(As)和钴(Co)官能化 QD 的吸附剂,以评估所产生的 QD 表面的性能和传感能力。分析包括计算表面和气体的吸附能、热力学性质、非共价相互作用、天然键轨道分析和其他拓扑学方面。结果表明,GP_As 功能化表面的能隙较低,因此对相应气体(C6H6、CO2 和 H2S)的反应性和敏感性较高。此外,所研究体系的计算吸附能表明了热力学的有利性和自发性。值得注意的是,我们的研究结果表明,与所研究的其他气体相比,QD_As 表面对 H2S 具有更高的吸附潜力;尽管如此,所有研究的 QD 表面对 C6H6、CO2 和 H2S 气体都具有显著的吸附能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hydrothermally synthesized transition metal doped ZnO nanorods for dye degradation and antibacterial activity Cellulose acetate sheet supported gold nanoparticles for the catalytic reduction of toxic organic pollutants Ab initio study of surfaces of lead and tin based metal halide perovskite structures Influence of yttrium doping on the photocatalytic behaviour of lanthanum titanate: a material for water treatment Reversible photoluminescence shift in imidazolium l-tartrate crystal triggered by acoustic shock waves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1