PASTEL

IF 3.6 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies Pub Date : 2024-01-12 DOI:10.1145/3633808
F. Elhattab, Sara Bouchenak, Cédric Boscher
{"title":"PASTEL","authors":"F. Elhattab, Sara Bouchenak, Cédric Boscher","doi":"10.1145/3633808","DOIUrl":null,"url":null,"abstract":"Federated Learning (FL) aims to improve machine learning privacy by allowing several data owners in edge and ubiquitous computing systems to collaboratively train a model, while preserving their local training data private, and sharing only model training parameters. However, FL systems remain vulnerable to privacy attacks, and in particular, to membership inference attacks that allow adversaries to determine whether a given data sample belongs to participants' training data, thus, raising a significant threat in sensitive ubiquitous computing systems. Indeed, membership inference attacks are based on a binary classifier that is able to differentiate between member data samples used to train a model and non-member data samples not used for training. In this context, several defense mechanisms, including differential privacy, have been proposed to counter such privacy attacks. However, the main drawback of these methods is that they may reduce model accuracy while incurring non-negligible computational costs. In this paper, we precisely address this problem with PASTEL, a FL privacy-preserving mechanism that is based on a novel multi-objective learning function. On the one hand, PASTEL decreases the generalization gap to reduce the difference between member data and non-member data, and on the other hand, PASTEL reduces model loss and leverages adaptive gradient descent optimization for preserving high model accuracy. Our experimental evaluations conducted on eight widely used datasets and five model architectures show that PASTEL significantly reduces membership inference attack success rates by up to -28%, reaching optimal privacy protection in most cases, with low to no perceptible impact on model accuracy.","PeriodicalId":20553,"journal":{"name":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","volume":"14 1","pages":"1 - 29"},"PeriodicalIF":3.6000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3633808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Federated Learning (FL) aims to improve machine learning privacy by allowing several data owners in edge and ubiquitous computing systems to collaboratively train a model, while preserving their local training data private, and sharing only model training parameters. However, FL systems remain vulnerable to privacy attacks, and in particular, to membership inference attacks that allow adversaries to determine whether a given data sample belongs to participants' training data, thus, raising a significant threat in sensitive ubiquitous computing systems. Indeed, membership inference attacks are based on a binary classifier that is able to differentiate between member data samples used to train a model and non-member data samples not used for training. In this context, several defense mechanisms, including differential privacy, have been proposed to counter such privacy attacks. However, the main drawback of these methods is that they may reduce model accuracy while incurring non-negligible computational costs. In this paper, we precisely address this problem with PASTEL, a FL privacy-preserving mechanism that is based on a novel multi-objective learning function. On the one hand, PASTEL decreases the generalization gap to reduce the difference between member data and non-member data, and on the other hand, PASTEL reduces model loss and leverages adaptive gradient descent optimization for preserving high model accuracy. Our experimental evaluations conducted on eight widely used datasets and five model architectures show that PASTEL significantly reduces membership inference attack success rates by up to -28%, reaching optimal privacy protection in most cases, with low to no perceptible impact on model accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
粉彩
联合学习(FL)旨在通过允许边缘和泛在计算系统中的多个数据所有者协同训练一个模型来提高机器学习的隐私性,同时保持其本地训练数据的私密性,并仅共享模型训练参数。然而,FL 系统仍然容易受到隐私攻击,特别是成员推理攻击,这种攻击能让对手确定给定的数据样本是否属于参与者的训练数据,从而对敏感的泛在计算系统构成重大威胁。事实上,成员推断攻击基于二进制分类器,该分类器能够区分用于训练模型的成员数据样本和未用于训练的非成员数据样本。在这种情况下,人们提出了包括差分隐私在内的几种防御机制来应对这种隐私攻击。然而,这些方法的主要缺点是可能会降低模型的准确性,同时产生不可忽略的计算成本。在本文中,我们利用基于新型多目标学习函数的 FL 隐私保护机制 PASTEL 准确地解决了这一问题。一方面,PASTEL 缩小了泛化差距,从而减少了成员数据与非成员数据之间的差异;另一方面,PASTEL 减少了模型损失,并利用自适应梯度下降优化来保持高模型精度。我们在八个广泛使用的数据集和五个模型架构上进行的实验评估表明,PASTEL 显著降低了成员推断攻击成功率,最高可达-28%,在大多数情况下达到了最佳隐私保护效果,而且对模型准确性的影响很小,甚至没有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies Computer Science-Computer Networks and Communications
CiteScore
9.10
自引率
0.00%
发文量
154
期刊最新文献
Orientation-Aware 3D SLAM in Alternating Magnetic Field from Powerlines UniFi PASTEL Unobtrusive Air Leakage Estimation for Earables with In-ear Microphones PyroSense
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1