{"title":"PyroSense","authors":"Huaili Zeng, Gen Li, Tianxing Li","doi":"10.1145/3631435","DOIUrl":null,"url":null,"abstract":"We present PyroSense, the first-of-its-kind system that enables fine-grained 3D posture reconstruction using ubiquitous COTS passive infrared sensor (PIR sensor). PyroSense senses heat signals generated by the human body and airflow due to body movement to reconstruct the corresponding human postures in real time. PyroSense greatly advances the prior PIR-based sensing design by improving the sensitivity of COTS PIR sensor to body movement, increasing spatial resolution without additional deployment overhead, and designing intellectual algorithms to adapt to diverse environmental factors. We build a low-cost PyroSense prototype using off-the-shelf hardware components. The experimental findings indicate that PyroSense not only attains a classification accuracy of 99.46% across 15 classes, but it also registers a mean joint distance error of less than 16 cm for 14 body joints for posture reconstruction in challenging environments.","PeriodicalId":20553,"journal":{"name":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","volume":"13 5","pages":"1 - 32"},"PeriodicalIF":3.6000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3631435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
We present PyroSense, the first-of-its-kind system that enables fine-grained 3D posture reconstruction using ubiquitous COTS passive infrared sensor (PIR sensor). PyroSense senses heat signals generated by the human body and airflow due to body movement to reconstruct the corresponding human postures in real time. PyroSense greatly advances the prior PIR-based sensing design by improving the sensitivity of COTS PIR sensor to body movement, increasing spatial resolution without additional deployment overhead, and designing intellectual algorithms to adapt to diverse environmental factors. We build a low-cost PyroSense prototype using off-the-shelf hardware components. The experimental findings indicate that PyroSense not only attains a classification accuracy of 99.46% across 15 classes, but it also registers a mean joint distance error of less than 16 cm for 14 body joints for posture reconstruction in challenging environments.