Eleni Konstantakopoulou, Annalaura Casanova Municchia, Loredana Luvidi, Marco Ferretti
{"title":"Comparison of Different Methods for Evaluating Quantitative X-ray Fluorescence Data in Copper-Based Artefacts","authors":"Eleni Konstantakopoulou, Annalaura Casanova Municchia, Loredana Luvidi, Marco Ferretti","doi":"10.3390/condmat9010005","DOIUrl":null,"url":null,"abstract":"Handheld X-ray Fluorescence devices (HH-XRF) have given archaeologists and conservators the opportunity to study a wide range of materials encountered in their work with great accessibility and flexibility. The investigation of copper-based artefacts is a frequent application of these instruments in the field of cultural heritage as it gives direct and rapid quantitative results that can provide very important information about them, such as their fabrication technology. This paper discusses the comparison of quantitative results, obtained by a commercial handheld XRF device “Bruker Tracer 5g” on certified standards, compositionally significant in copper-based alloys of interest in the field of cultural heritage. The measured elemental concentrations were derived using three different calibrations, which were examined for their accuracy. Two of them were based on the empirical coefficients approach, performed by the built-in calibration/software (copper alloy calibrations provided by Bruker manufacturer and the Bruker EasyCal software), while the third one was performed off-line by processing the spectra with an independent fundamental parameters (FP) software (PyMca version 5.9.2., a X-ray fluorescence analysis software developed at the European Synchrotron Radiation Facility). The results highlight that although HH-XRF devices simplify data collection, for optimal quantitative results, the correct choice of analysis conditions and calibration method still requires a detailed understanding of the principles of X-ray spectrometry.","PeriodicalId":505256,"journal":{"name":"Condensed Matter","volume":"9 47","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/condmat9010005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Handheld X-ray Fluorescence devices (HH-XRF) have given archaeologists and conservators the opportunity to study a wide range of materials encountered in their work with great accessibility and flexibility. The investigation of copper-based artefacts is a frequent application of these instruments in the field of cultural heritage as it gives direct and rapid quantitative results that can provide very important information about them, such as their fabrication technology. This paper discusses the comparison of quantitative results, obtained by a commercial handheld XRF device “Bruker Tracer 5g” on certified standards, compositionally significant in copper-based alloys of interest in the field of cultural heritage. The measured elemental concentrations were derived using three different calibrations, which were examined for their accuracy. Two of them were based on the empirical coefficients approach, performed by the built-in calibration/software (copper alloy calibrations provided by Bruker manufacturer and the Bruker EasyCal software), while the third one was performed off-line by processing the spectra with an independent fundamental parameters (FP) software (PyMca version 5.9.2., a X-ray fluorescence analysis software developed at the European Synchrotron Radiation Facility). The results highlight that although HH-XRF devices simplify data collection, for optimal quantitative results, the correct choice of analysis conditions and calibration method still requires a detailed understanding of the principles of X-ray spectrometry.