ADA-SHARK

IF 3.6 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies Pub Date : 2024-01-12 DOI:10.1145/3631416
Marvin Martin, Etienne Meunier, P. Moreau, Jean-Eudes Gadenne, J. Dautel, Félicien Catherin, Eugene Pinsky, Reza Rawassizadeh
{"title":"ADA-SHARK","authors":"Marvin Martin, Etienne Meunier, P. Moreau, Jean-Eudes Gadenne, J. Dautel, Félicien Catherin, Eugene Pinsky, Reza Rawassizadeh","doi":"10.1145/3631416","DOIUrl":null,"url":null,"abstract":"Due to global warming, sharks are moving closer to the beaches, affecting the risk to humans and their own lives. Within the past decade, several technologies were developed to reduce the risks for swimmers and surfers. This study proposes a robust method based on computer vision to detect sharks using an underwater camera monitoring system to secure coastlines. The system is autonomous, environment-friendly, and requires low maintenance. 43,679 images extracted from 175 hours of videos of marine life were used to train our algorithms. Our approach allows the collection and analysis of videos in real-time using an autonomous underwater camera connected to a smart buoy charged with solar panels. The videos are processed by a Domain Adversarial Convolutional Neural Network to discern sharks regardless of the background environment with an F2-score of 83.2% and a recall of 90.9%, while human experts have an F2-score of 94% and a recall of 95.7%.","PeriodicalId":20553,"journal":{"name":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","volume":"12 2","pages":"1 - 25"},"PeriodicalIF":3.6000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3631416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Due to global warming, sharks are moving closer to the beaches, affecting the risk to humans and their own lives. Within the past decade, several technologies were developed to reduce the risks for swimmers and surfers. This study proposes a robust method based on computer vision to detect sharks using an underwater camera monitoring system to secure coastlines. The system is autonomous, environment-friendly, and requires low maintenance. 43,679 images extracted from 175 hours of videos of marine life were used to train our algorithms. Our approach allows the collection and analysis of videos in real-time using an autonomous underwater camera connected to a smart buoy charged with solar panels. The videos are processed by a Domain Adversarial Convolutional Neural Network to discern sharks regardless of the background environment with an F2-score of 83.2% and a recall of 90.9%, while human experts have an F2-score of 94% and a recall of 95.7%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ADA-SHARK
由于全球变暖,鲨鱼正在向海滩靠近,从而影响到人类及其自身的生命安全。在过去的十年中,人们开发了多种技术来降低游泳者和冲浪者的风险。本研究提出了一种基于计算机视觉的稳健方法,利用水下摄像监控系统检测鲨鱼,以确保海岸线安全。该系统具有自主性、环保性和低维护要求。从 175 个小时的海洋生物视频中提取的 43,679 幅图像被用于训练我们的算法。我们的方法允许使用连接到太阳能电池板充电的智能浮标的自主水下摄像机实时收集和分析视频。视频经领域对抗卷积神经网络处理后,无论背景环境如何,都能辨别出鲨鱼,其 F2 分数为 83.2%,召回率为 90.9%,而人类专家的 F2 分数为 94%,召回率为 95.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies Computer Science-Computer Networks and Communications
CiteScore
9.10
自引率
0.00%
发文量
154
期刊最新文献
Orientation-Aware 3D SLAM in Alternating Magnetic Field from Powerlines UniFi PASTEL Unobtrusive Air Leakage Estimation for Earables with In-ear Microphones PyroSense
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1