Wall Matters

IF 3.6 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies Pub Date : 2024-01-12 DOI:10.1145/3631417
Binbin Xie, Minhao Cui, Deepak Ganesan, Jie Xiong
{"title":"Wall Matters","authors":"Binbin Xie, Minhao Cui, Deepak Ganesan, Jie Xiong","doi":"10.1145/3631417","DOIUrl":null,"url":null,"abstract":"Wireless sensing has demonstrated its potential of utilizing radio frequency (RF) signals to sense individuals and objects. Among different wireless signals, LoRa signal is particularly promising for through-wall sensing owing to its strong penetration capability. However, existing works view walls as a \"bad\" thing as they attenuate signal power and decrease the sensing coverage. In this paper, we show a counter-intuitive observation, i.e., walls can be used to increase the sensing coverage if the RF devices are placed properly with respect to walls. To fully understand the underlying principle behind this observation, we develop a through-wall sensing model to mathematically quantify the effect of walls. We further show that besides increasing the sensing coverage, we can also use the wall to help mitigate interference, which is one well-known issue in wireless sensing. We demonstrate the effect of wall through two representative applications, i.e., macro-level human walking sensing and micro-level human respiration monitoring. Comprehensive experiments show that by properly deploying the transmitter and receiver with respect to the wall, the coverage of human walking detection can be expanded by more than 160%. By leveraging the effect of wall to mitigate interference, we can sense the tiny respiration of target even in the presence of three interferers walking nearby.","PeriodicalId":20553,"journal":{"name":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","volume":"2 4","pages":"1 - 22"},"PeriodicalIF":3.6000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3631417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Wireless sensing has demonstrated its potential of utilizing radio frequency (RF) signals to sense individuals and objects. Among different wireless signals, LoRa signal is particularly promising for through-wall sensing owing to its strong penetration capability. However, existing works view walls as a "bad" thing as they attenuate signal power and decrease the sensing coverage. In this paper, we show a counter-intuitive observation, i.e., walls can be used to increase the sensing coverage if the RF devices are placed properly with respect to walls. To fully understand the underlying principle behind this observation, we develop a through-wall sensing model to mathematically quantify the effect of walls. We further show that besides increasing the sensing coverage, we can also use the wall to help mitigate interference, which is one well-known issue in wireless sensing. We demonstrate the effect of wall through two representative applications, i.e., macro-level human walking sensing and micro-level human respiration monitoring. Comprehensive experiments show that by properly deploying the transmitter and receiver with respect to the wall, the coverage of human walking detection can be expanded by more than 160%. By leveraging the effect of wall to mitigate interference, we can sense the tiny respiration of target even in the presence of three interferers walking nearby.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
墙壁事务
无线传感已经证明了其利用射频(RF)信号感知个人和物体的潜力。在各种无线信号中,LoRa 信号因其强大的穿透能力而特别适合穿墙传感。然而,现有的研究将墙壁视为 "坏 "东西,因为它们会衰减信号功率并降低感知覆盖范围。在本文中,我们展示了一种与直觉相反的观点,即如果射频设备与墙壁的位置恰当,墙壁可以用来增加传感覆盖范围。为了充分理解这一观察结果背后的基本原理,我们开发了一个穿墙传感模型,以数学方式量化墙壁的影响。我们进一步证明,除了增加传感覆盖范围,我们还可以利用墙壁来帮助减轻干扰,这是无线传感中一个众所周知的问题。我们通过两个具有代表性的应用,即宏观层面的人体行走感测和微观层面的人体呼吸监测,展示了墙壁的影响。综合实验表明,通过将发射器和接收器相对于墙壁进行适当部署,人类行走检测的覆盖范围可扩大 160% 以上。利用墙壁的减弱干扰效果,即使在附近有三个干扰者行走的情况下,我们也能感知目标的微小呼吸声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies Computer Science-Computer Networks and Communications
CiteScore
9.10
自引率
0.00%
发文量
154
期刊最新文献
Orientation-Aware 3D SLAM in Alternating Magnetic Field from Powerlines UniFi PASTEL Unobtrusive Air Leakage Estimation for Earables with In-ear Microphones PyroSense
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1