First Impressions of the NVIDIA Grace CPU Superchip and NVIDIA Grace Hopper Superchip for Scientific Workloads

N. Simakov, Matthew D. Jones, T. Furlani, E. Siegmann, Robert Harrison
{"title":"First Impressions of the NVIDIA Grace CPU Superchip and NVIDIA Grace Hopper Superchip for Scientific Workloads","authors":"N. Simakov, Matthew D. Jones, T. Furlani, E. Siegmann, Robert Harrison","doi":"10.1145/3636480.3637097","DOIUrl":null,"url":null,"abstract":"The engineering samples of the NVIDIA Grace CPU Superchip and NVIDIA Grace Hopper Superchips were tested using different benchmarks and scientific applications. The benchmarks include HPCC and HPCG. The real application-based benchmark includes AI-Benchmark-Alpha (a TensorFlow benchmark), Gromacs, OpenFOAM, and ROMS. The performance was compared to multiple Intel, AMD, ARM CPUs and several x86 with NVIDIA GPU systems. A brief energy efficiency estimate was performed based on TDP values. We found that in HPCC benchmark tests, the per-core performance of Grace is similar to or faster than AMD Milan cores, and the high core count often allows NVIDIA Grace CPU Superchip to have per-node performance similar to Intel Sapphire Rapids with High Bandwidth Memory: slower in matrix multiplication (by 17%) and FFT (by 6%), faster in Linpack (by 9%)). In scientific applications, the NVIDIA Grace CPU Superchip performance is slower by 6% to 18% in Gromacs, faster by 7% in OpenFOAM, and right between HBM and DDR modes of Intel Sapphire Rapids in ROMS. The combined CPU-GPU performance in Gromacs is significantly faster (by 20% to 117% faster) than any tested x86-NVIDIA GPU system. Overall, the new NVIDIA Grace Hopper Superchip and NVIDIA Grace CPU Superchip Superchip are high-performance and most likely energy-efficient solutions for HPC centers.","PeriodicalId":120904,"journal":{"name":"Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region Workshops","volume":"13 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3636480.3637097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The engineering samples of the NVIDIA Grace CPU Superchip and NVIDIA Grace Hopper Superchips were tested using different benchmarks and scientific applications. The benchmarks include HPCC and HPCG. The real application-based benchmark includes AI-Benchmark-Alpha (a TensorFlow benchmark), Gromacs, OpenFOAM, and ROMS. The performance was compared to multiple Intel, AMD, ARM CPUs and several x86 with NVIDIA GPU systems. A brief energy efficiency estimate was performed based on TDP values. We found that in HPCC benchmark tests, the per-core performance of Grace is similar to or faster than AMD Milan cores, and the high core count often allows NVIDIA Grace CPU Superchip to have per-node performance similar to Intel Sapphire Rapids with High Bandwidth Memory: slower in matrix multiplication (by 17%) and FFT (by 6%), faster in Linpack (by 9%)). In scientific applications, the NVIDIA Grace CPU Superchip performance is slower by 6% to 18% in Gromacs, faster by 7% in OpenFOAM, and right between HBM and DDR modes of Intel Sapphire Rapids in ROMS. The combined CPU-GPU performance in Gromacs is significantly faster (by 20% to 117% faster) than any tested x86-NVIDIA GPU system. Overall, the new NVIDIA Grace Hopper Superchip and NVIDIA Grace CPU Superchip Superchip are high-performance and most likely energy-efficient solutions for HPC centers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向科学工作负载的英伟达™(NVIDIA®)Grace CPU 超级芯片和英伟达™(NVIDIA®)Grace Hopper 超级芯片初体验
英伟达™(NVIDIA®)Grace CPU 超级芯片和英伟达™(NVIDIA®)Grace Hopper 超级芯片的工程样品通过不同的基准和科学应用进行了测试。基准测试包括 HPCC 和 HPCG。基于实际应用的基准包括 AI-Benchmark-Alpha(TensorFlow 基准)、Gromacs、OpenFOAM 和 ROMS。性能与多个英特尔、AMD、ARM CPU 以及多个 x86 和英伟达™(NVIDIA®)GPU 系统进行了比较。根据 TDP 值对能效进行了简要评估。我们发现,在 HPCC 基准测试中,Grace 的单位内核性能与 AMD 米兰内核相近或更快,而高内核数往往使英伟达™ Grace CPU 超级芯片的单位节点性能与配备高带宽内存的英特尔蓝宝石锐龙相似:矩阵乘法(慢 17%)和 FFT(慢 6%),Linpack(快 9%))。在科学应用中,英伟达™(NVIDIA®)Grace CPU 超级芯片的性能在 Gromacs 中要慢 6% 到 18%,在 OpenFOAM 中要快 7%,在 ROMS 中则介于英特尔蓝宝石锐龙的 HBM 和 DDR 模式之间。在 Gromacs 中,CPU-GPU 的组合性能比任何经过测试的 x86-NVIDIA GPU 系统都要快得多(快 20% 到 117%)。总之,新的英伟达™(NVIDIA®)Grace Hopper 超级芯片和英伟达™(NVIDIA®)Grace CPU 超级芯片是高性能、高能效的高性能计算中心解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Introducing software pipelining for the A64FX processor into LLVM Performance Evaluation of the Fourth-Generation Xeon with Different Memory Characteristics An Overview on Mixing MPI and OpenMP Dependent Tasking on A64FX Optimize Efficiency of Utilizing Systems by Dynamic Core Binding MPI-Adapter2: An Automatic ABI Translation Library Builder for MPI Application Binary Portability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1