{"title":"Variations in Physiological and Biochemical Characteristics of Kalidium foliatum Leaves and Roots in Two Saline Habitats in Desert Region","authors":"Lamei Jiang, Deyan Wu, Wenjing Li, Yuehan Liu, Eryang Li, Xiaotong Li, Guang Yang, Xuemin He","doi":"10.3390/f15010148","DOIUrl":null,"url":null,"abstract":"Salt stress is a key environmental factor that has adverse effects on plant growth and development. High salinity induces a series of structural and functional changes in the morphological and anatomical features. The physiological and biochemical changes in K. foliatum in response to salt stress in natural environments are still unclear. Based on this, this study compared and analyzed the differences in the physiological and biochemical indicators between the leaf and root tissues in high-salt and low-salt habitats, selecting K. foliatum as the research object. The results showed that the chlorophyll contents in the leaves of K. foliatum decreased in the high-salt habitat, while the thicknesses of the upper and lower epidermises, as well as the thicknesses of the palisade tissue, significantly increased. The high-salt environment led to decreases in the N and P contents in the leaves and root tissues of K. foliatum, resulting in changes in the stoichiometric ratio of elements. The concentrations of C, N, and P in the roots of K. foliatum were lower than those in the leaves. The accumulation of Na+ in the K. foliatum roots was greater than that in the leaves, and the roots could promote the transport of sodium ions to the leaves. The contents of starch and soluble sugar in the leaves showed higher proportions in the high-salt habitat than in the low-salt habitat, while the changes in the roots and leaves were the opposite. As the salt content increased, the proline contents in the leaves and roots of K. foliatum significantly increased, and the proline contents in the roots of K. foliatum were lower than those in the leaves. The leaves and roots exhibited higher levels of peroxidase and superoxide enzymes in the high-salinity habitat than in the low-salinity habitat. The superoxide dismutase (SOD) activity of the K. foliatum leaves and catalase (CAT) activity of the roots were the “central traits” in the high-salt habitat. In the low-salt habitat, the leaf malondialdehyde (MDA) and root C/N were the central traits of the leaves and roots, indicating that K. foliatum adapts to changes in salt environments in different ways.","PeriodicalId":12339,"journal":{"name":"Forests","volume":"14 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forests","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/f15010148","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Salt stress is a key environmental factor that has adverse effects on plant growth and development. High salinity induces a series of structural and functional changes in the morphological and anatomical features. The physiological and biochemical changes in K. foliatum in response to salt stress in natural environments are still unclear. Based on this, this study compared and analyzed the differences in the physiological and biochemical indicators between the leaf and root tissues in high-salt and low-salt habitats, selecting K. foliatum as the research object. The results showed that the chlorophyll contents in the leaves of K. foliatum decreased in the high-salt habitat, while the thicknesses of the upper and lower epidermises, as well as the thicknesses of the palisade tissue, significantly increased. The high-salt environment led to decreases in the N and P contents in the leaves and root tissues of K. foliatum, resulting in changes in the stoichiometric ratio of elements. The concentrations of C, N, and P in the roots of K. foliatum were lower than those in the leaves. The accumulation of Na+ in the K. foliatum roots was greater than that in the leaves, and the roots could promote the transport of sodium ions to the leaves. The contents of starch and soluble sugar in the leaves showed higher proportions in the high-salt habitat than in the low-salt habitat, while the changes in the roots and leaves were the opposite. As the salt content increased, the proline contents in the leaves and roots of K. foliatum significantly increased, and the proline contents in the roots of K. foliatum were lower than those in the leaves. The leaves and roots exhibited higher levels of peroxidase and superoxide enzymes in the high-salinity habitat than in the low-salinity habitat. The superoxide dismutase (SOD) activity of the K. foliatum leaves and catalase (CAT) activity of the roots were the “central traits” in the high-salt habitat. In the low-salt habitat, the leaf malondialdehyde (MDA) and root C/N were the central traits of the leaves and roots, indicating that K. foliatum adapts to changes in salt environments in different ways.
期刊介绍:
Forests (ISSN 1999-4907) is an international and cross-disciplinary scholarly journal of forestry and forest ecology. It publishes research papers, short communications and review papers. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.