Connor Devine, Kenna Brown, Kat O Patton, Chelsea M Heveran, Stephen A Martin
{"title":"Rapamycin does not alter bone microarchitecture or material properties quality in young-adult and aged female C57BL/6 mice","authors":"Connor Devine, Kenna Brown, Kat O Patton, Chelsea M Heveran, Stephen A Martin","doi":"10.1093/jbmrpl/ziae001","DOIUrl":null,"url":null,"abstract":"\n Advancing age is the strongest risk factor for osteoporosis and skeletal fragility. Rapamycin is an FDA approved immunosuppressant that inhibits the mechanistic target of rapamycin (mTOR) complex, extends lifespan, and protects against aging-related diseases in multiple species; however, the impact of rapamycin on skeletal tissue is incompletely understood. We evaluated the effects of a short-term, low-dosage, interval rapamycin treatment on bone microarchitecture and strength in young-adult (3-months-old) and aged female (20-months-old) C57BL/6 mice. Rapamycin (2 mg/kg body mass) was administered via intraperitoneal injection 1x/5 days for a duration of 8 weeks; this treatment regimen has been shown to induce geroprotective effects while minimizing the side-effects associated with higher rapamycin dosages and/or more frequent or prolonged delivery schedules. Aged femurs exhibited lower cancellous bone mineral density, volume, trabecular connectivity density and number, higher trabecular thickness and spacing, and lower cortical thickness compared to young-adult mice. Rapamycin had no impact on assessed microCT parameters. Flexural testing of the femur revealed yield strength and ultimate strength were lower in aged mice compared to young-adult mice. There were no effects of rapamycin on these or other measures of bone biomechanics. Age, but not rapamycin, altered local and global measures of bone turnover. These data demonstrate a short-term, low-dosage, interval, rapamycin treatment does not negatively or positively impact the skeleton of young-adult and aged mice.","PeriodicalId":14611,"journal":{"name":"JBMR Plus","volume":"2 9","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JBMR Plus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jbmrpl/ziae001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Advancing age is the strongest risk factor for osteoporosis and skeletal fragility. Rapamycin is an FDA approved immunosuppressant that inhibits the mechanistic target of rapamycin (mTOR) complex, extends lifespan, and protects against aging-related diseases in multiple species; however, the impact of rapamycin on skeletal tissue is incompletely understood. We evaluated the effects of a short-term, low-dosage, interval rapamycin treatment on bone microarchitecture and strength in young-adult (3-months-old) and aged female (20-months-old) C57BL/6 mice. Rapamycin (2 mg/kg body mass) was administered via intraperitoneal injection 1x/5 days for a duration of 8 weeks; this treatment regimen has been shown to induce geroprotective effects while minimizing the side-effects associated with higher rapamycin dosages and/or more frequent or prolonged delivery schedules. Aged femurs exhibited lower cancellous bone mineral density, volume, trabecular connectivity density and number, higher trabecular thickness and spacing, and lower cortical thickness compared to young-adult mice. Rapamycin had no impact on assessed microCT parameters. Flexural testing of the femur revealed yield strength and ultimate strength were lower in aged mice compared to young-adult mice. There were no effects of rapamycin on these or other measures of bone biomechanics. Age, but not rapamycin, altered local and global measures of bone turnover. These data demonstrate a short-term, low-dosage, interval, rapamycin treatment does not negatively or positively impact the skeleton of young-adult and aged mice.