Chiral Standing Spin Waves and Unidirectional Waves of Odd Elastic Cylindrical Shells

Andi Lai, Jiawei Zhou, C.W. Lim
{"title":"Chiral Standing Spin Waves and Unidirectional Waves of Odd Elastic Cylindrical Shells","authors":"Andi Lai, Jiawei Zhou, C.W. Lim","doi":"10.1115/1.4064447","DOIUrl":null,"url":null,"abstract":"\n Rotating waves can be observed in structures with periodic conditions, such as cylinders and spheres. Compared with traveling waves and standing waves, rotating waves have received less attention. In this paper, an odd elastic dynamic model of the cylindrical shells is established, and the dispersion relation, traveling waves, and standing waves are investigated. The non-Hermitian rotating waves and single-handedness chiral standing spin waves are reported, which are novel dynamic phenomenon caused by odd elastic effects. Waves generally cannot propagate in passive materials with vanishingly small elastic modulus. However, a unidirectional wave with the highest cutoff frequency can occur in an odd elastic cylindrical shell with vanishingly small elastic modulus. For incompletely restrained end displacements, the odd elastic cylindrical shell can also generate a hybrid mode combining standing spin waves with unidirectional waves.","PeriodicalId":508156,"journal":{"name":"Journal of Applied Mechanics","volume":"29 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4064447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Rotating waves can be observed in structures with periodic conditions, such as cylinders and spheres. Compared with traveling waves and standing waves, rotating waves have received less attention. In this paper, an odd elastic dynamic model of the cylindrical shells is established, and the dispersion relation, traveling waves, and standing waves are investigated. The non-Hermitian rotating waves and single-handedness chiral standing spin waves are reported, which are novel dynamic phenomenon caused by odd elastic effects. Waves generally cannot propagate in passive materials with vanishingly small elastic modulus. However, a unidirectional wave with the highest cutoff frequency can occur in an odd elastic cylindrical shell with vanishingly small elastic modulus. For incompletely restrained end displacements, the odd elastic cylindrical shell can also generate a hybrid mode combining standing spin waves with unidirectional waves.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
奇数弹性圆柱壳的手性驻留自旋波和单向波
旋转波可以在圆柱体和球体等具有周期性条件的结构中观察到。与行波和驻波相比,旋转波受到的关注较少。本文建立了圆柱形壳体的奇异弹性动力学模型,并对其频散关系、行波和驻波进行了研究。报告了非赫米提旋转波和单手性手性驻留自旋波,这是奇异弹性效应引起的新动态现象。一般来说,波无法在弹性模量极小的被动材料中传播。然而,在弹性模量极小的奇异弹性圆柱形壳体中,可以产生截止频率最高的单向波。对于不完全受约束的端部位移,奇数弹性圆柱壳还能产生结合驻留自旋波和单向波的混合模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Master Curves for Poroelastic Spherical Indentation with Step Displacement Loading Elastic Foundation Solution for the End Notched Flexure (ENF) Mode II Sandwich Configuration Frictional Slippage of Annular Elastomeric Disks Compressed Between Rigid Platens Uncovering pattern-transformable soft granular crystals induced by microscopic instability Topology optimization of hard-magnetic soft phononic structures for wide magnetically tunable band gaps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1