Pragyan Banerjee, Shivam Milind Akarte, Prakhar Kumar, Muhammad Shamsuzzaman, Ankit Butola, Krishna Agarwal, dilip kumar prasad, F. Melandsø, A. Habib
{"title":"High-resolution imaging in acoustic microscopy using deep learning","authors":"Pragyan Banerjee, Shivam Milind Akarte, Prakhar Kumar, Muhammad Shamsuzzaman, Ankit Butola, Krishna Agarwal, dilip kumar prasad, F. Melandsø, A. Habib","doi":"10.1088/2632-2153/ad1c30","DOIUrl":null,"url":null,"abstract":"\n Acoustic microscopy is a cutting-edge label-free imaging technology that allows us to see the surface and interior structure of industrial and biological materials. The acoustic image is created by focusing high-frequency acoustic waves on the object and then detecting reflected signals. On the other hand, the quality of the acoustic image's resolution is influenced by the signal-to-noise ratio, the scanning step size, and the frequency of the transducer. Deep learning-based high-resolution imaging in acoustic microscopy is proposed in this paper. To illustrate 4 times resolution improvement in acoustic images, five distinct models are used: SRGAN, ESRGAN, IMDN, DBPN-RES-MR64-3, and SwinIR. The trained model's performance is assessed by calculating the PSNR (Peak Signal to Noise Ratio) and SSIM (Structural Similarity Index) between the network-predicted and ground truth images. To avoid the model from over-fitting, transfer learning was incorporated during the procedure. SwinIR had average SSIM and PSNR values of 0.95 and 35, respectively. The model was also evaluated using a biological sample from Reindeer Antler, yielding an SSIM score of 0.88 and a PSNR score of 32.93. Our framework is relevant to a wide range of industrial applications, including electronic production, material micro-structure analysis, and other biological applications in general.","PeriodicalId":503691,"journal":{"name":"Machine Learning: Science and Technology","volume":"59 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning: Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad1c30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Acoustic microscopy is a cutting-edge label-free imaging technology that allows us to see the surface and interior structure of industrial and biological materials. The acoustic image is created by focusing high-frequency acoustic waves on the object and then detecting reflected signals. On the other hand, the quality of the acoustic image's resolution is influenced by the signal-to-noise ratio, the scanning step size, and the frequency of the transducer. Deep learning-based high-resolution imaging in acoustic microscopy is proposed in this paper. To illustrate 4 times resolution improvement in acoustic images, five distinct models are used: SRGAN, ESRGAN, IMDN, DBPN-RES-MR64-3, and SwinIR. The trained model's performance is assessed by calculating the PSNR (Peak Signal to Noise Ratio) and SSIM (Structural Similarity Index) between the network-predicted and ground truth images. To avoid the model from over-fitting, transfer learning was incorporated during the procedure. SwinIR had average SSIM and PSNR values of 0.95 and 35, respectively. The model was also evaluated using a biological sample from Reindeer Antler, yielding an SSIM score of 0.88 and a PSNR score of 32.93. Our framework is relevant to a wide range of industrial applications, including electronic production, material micro-structure analysis, and other biological applications in general.