High-resolution imaging in acoustic microscopy using deep learning

Pragyan Banerjee, Shivam Milind Akarte, Prakhar Kumar, Muhammad Shamsuzzaman, Ankit Butola, Krishna Agarwal, dilip kumar prasad, F. Melandsø, A. Habib
{"title":"High-resolution imaging in acoustic microscopy using deep learning","authors":"Pragyan Banerjee, Shivam Milind Akarte, Prakhar Kumar, Muhammad Shamsuzzaman, Ankit Butola, Krishna Agarwal, dilip kumar prasad, F. Melandsø, A. Habib","doi":"10.1088/2632-2153/ad1c30","DOIUrl":null,"url":null,"abstract":"\n Acoustic microscopy is a cutting-edge label-free imaging technology that allows us to see the surface and interior structure of industrial and biological materials. The acoustic image is created by focusing high-frequency acoustic waves on the object and then detecting reflected signals. On the other hand, the quality of the acoustic image's resolution is influenced by the signal-to-noise ratio, the scanning step size, and the frequency of the transducer. Deep learning-based high-resolution imaging in acoustic microscopy is proposed in this paper. To illustrate 4 times resolution improvement in acoustic images, five distinct models are used: SRGAN, ESRGAN, IMDN, DBPN-RES-MR64-3, and SwinIR. The trained model's performance is assessed by calculating the PSNR (Peak Signal to Noise Ratio) and SSIM (Structural Similarity Index) between the network-predicted and ground truth images. To avoid the model from over-fitting, transfer learning was incorporated during the procedure. SwinIR had average SSIM and PSNR values of 0.95 and 35, respectively. The model was also evaluated using a biological sample from Reindeer Antler, yielding an SSIM score of 0.88 and a PSNR score of 32.93. Our framework is relevant to a wide range of industrial applications, including electronic production, material micro-structure analysis, and other biological applications in general.","PeriodicalId":503691,"journal":{"name":"Machine Learning: Science and Technology","volume":"59 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning: Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad1c30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Acoustic microscopy is a cutting-edge label-free imaging technology that allows us to see the surface and interior structure of industrial and biological materials. The acoustic image is created by focusing high-frequency acoustic waves on the object and then detecting reflected signals. On the other hand, the quality of the acoustic image's resolution is influenced by the signal-to-noise ratio, the scanning step size, and the frequency of the transducer. Deep learning-based high-resolution imaging in acoustic microscopy is proposed in this paper. To illustrate 4 times resolution improvement in acoustic images, five distinct models are used: SRGAN, ESRGAN, IMDN, DBPN-RES-MR64-3, and SwinIR. The trained model's performance is assessed by calculating the PSNR (Peak Signal to Noise Ratio) and SSIM (Structural Similarity Index) between the network-predicted and ground truth images. To avoid the model from over-fitting, transfer learning was incorporated during the procedure. SwinIR had average SSIM and PSNR values of 0.95 and 35, respectively. The model was also evaluated using a biological sample from Reindeer Antler, yielding an SSIM score of 0.88 and a PSNR score of 32.93. Our framework is relevant to a wide range of industrial applications, including electronic production, material micro-structure analysis, and other biological applications in general.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度学习实现声学显微镜的高分辨率成像
声学显微镜是一种尖端的无标记成像技术,可让我们看到工业和生物材料的表面和内部结构。声学图像是通过将高频声波聚焦在物体上,然后检测反射信号而形成的。另一方面,声学图像的分辨率受信噪比、扫描步长和换能器频率的影响。本文提出了基于深度学习的声学显微镜高分辨率成像技术。为了说明声学图像分辨率提高了 4 倍,本文使用了五个不同的模型:SRGAN、ESRGAN、IMDN、DBPN-RES-MR64-3 和 SwinIR。通过计算网络预测图像与地面实况图像之间的 PSNR(峰值信噪比)和 SSIM(结构相似性指数)来评估训练模型的性能。为避免模型过度拟合,在此过程中加入了迁移学习。SwinIR 的平均 SSIM 值和 PSNR 值分别为 0.95 和 35。我们还使用驯鹿鹿茸生物样本对模型进行了评估,结果显示 SSIM 值为 0.88,PSNR 值为 32.93。我们的框架适用于广泛的工业应用,包括电子生产、材料微观结构分析和其他一般生物应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the Benefit of Attention in Inverse Design of Thin Films Filters Predictive Models for Inorganic Materials Thermoelectric Properties with Machine Learning Benchmarking machine learning interatomic potentials via phonon anharmonicity Application of Deep Learning-based Fuzzy Systems to Analyze the Overall Risk of Mortality in Glioblastoma Multiforme Formation Energy Prediction of Neutral Single-Atom Impurities in 2D Materials using Tree-based Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1