Design of a Spaceborne, Compact, Off-Axis, Multi-Mirror Optical System Based on Freeform Surfaces

IF 2.1 4区 物理与天体物理 Q2 OPTICS Photonics Pub Date : 2024-01-03 DOI:10.3390/photonics11010051
Baohua Wang, Xiaoyong Wang, Huilin Jiang, Yuanyuan Wang, Chao Yang, Yao Meng
{"title":"Design of a Spaceborne, Compact, Off-Axis, Multi-Mirror Optical System Based on Freeform Surfaces","authors":"Baohua Wang, Xiaoyong Wang, Huilin Jiang, Yuanyuan Wang, Chao Yang, Yao Meng","doi":"10.3390/photonics11010051","DOIUrl":null,"url":null,"abstract":"Based on the application requirements of high spectral resolutions, high spatial resolutions and wide swatches, a new-generation, high-performance, spaceborne, hyperspectral imaging spectrometer (NGHSI) with a spatial resolution of 15 m and a swatch of 90 km is proposed. The optical system of the NGHSI has a focal length of 1128 mm, an F-number of three, a field of view (FOV) of 7.32° and a slit length of 144 mm. A new off-axis, multi-mirror telescope structure with intermediate images is put forward, which solves the design problem that realizes secondary imaging and good telecentricity at the same time. And a new off-axis lens-compensation Offner configuration is adopted to address the challenge of the high-fidelity design of spectral imaging systems with long slit lengths. The relationship between X-Y polynomials and aberration coefficients is analyzed, and the X-Y polynomial freeform surfaces are used to correct the off-axis aberrations. The design results show that the image quality of the telescope system is close to the diffraction limit. The smile, known as the spectral distortion along the line, and keystone, which is the magnification difference for different wavelengths, of the spectral imaging system are less than 1/10 pixel size. The complete optical system of the NGHSI, including the telescope system and the spectral imaging system, has excellent imaging quality and the layout is compact and reasonable, which realizes the miniaturization design.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":"13 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/photonics11010051","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Based on the application requirements of high spectral resolutions, high spatial resolutions and wide swatches, a new-generation, high-performance, spaceborne, hyperspectral imaging spectrometer (NGHSI) with a spatial resolution of 15 m and a swatch of 90 km is proposed. The optical system of the NGHSI has a focal length of 1128 mm, an F-number of three, a field of view (FOV) of 7.32° and a slit length of 144 mm. A new off-axis, multi-mirror telescope structure with intermediate images is put forward, which solves the design problem that realizes secondary imaging and good telecentricity at the same time. And a new off-axis lens-compensation Offner configuration is adopted to address the challenge of the high-fidelity design of spectral imaging systems with long slit lengths. The relationship between X-Y polynomials and aberration coefficients is analyzed, and the X-Y polynomial freeform surfaces are used to correct the off-axis aberrations. The design results show that the image quality of the telescope system is close to the diffraction limit. The smile, known as the spectral distortion along the line, and keystone, which is the magnification difference for different wavelengths, of the spectral imaging system are less than 1/10 pixel size. The complete optical system of the NGHSI, including the telescope system and the spectral imaging system, has excellent imaging quality and the layout is compact and reasonable, which realizes the miniaturization design.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计基于自由曲面的空间、紧凑、离轴、多镜光学系统
根据高光谱分辨率、高空间分辨率和宽扫描范围的应用要求,提出了新一代高性能星载高光谱成像光谱仪(NGHSI),其空间分辨率为 15 米,扫描范围为 90 千米。NGHSI 的光学系统焦距为 1128 毫米,F 数为 3,视场角(FOV)为 7.32°,狭缝长度为 144 毫米。它提出了一种新型离轴多镜中间成像望远镜结构,解决了同时实现二次成像和良好远心的设计问题。此外,还采用了一种新的离轴透镜补偿 Offner 结构,以解决长狭缝光谱成像系统的高保真设计难题。分析了 X-Y 多项式与像差系数之间的关系,并利用 X-Y 多项式自由曲面来校正离轴像差。设计结果表明,望远镜系统的图像质量接近衍射极限。光谱成像系统的 "微笑"(即光谱沿线畸变)和 "梯形"(即不同波长的放大倍数差)小于 1/10 像素大小。NGHSI 的整套光学系统,包括望远镜系统和光谱成像系统,成像质量优异,布局紧凑合理,实现了小型化设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Photonics
Photonics Physics and Astronomy-Instrumentation
CiteScore
2.60
自引率
20.80%
发文量
817
审稿时长
8 weeks
期刊介绍: Photonics (ISSN 2304-6732) aims at a fast turn around time for peer-reviewing manuscripts and producing accepted articles. The online-only and open access nature of the journal will allow for a speedy and wide circulation of your research as well as review articles. We aim at establishing Photonics as a leading venue for publishing high impact fundamental research but also applications of optics and photonics. The journal particularly welcomes both theoretical (simulation) and experimental research. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
期刊最新文献
Complex Noise-Based Phase Retrieval Using Total Variation and Wavelet Transform Regularization Investigation of Multiple High Quality-Factor Fano Resonances in Asymmetric Nanopillar Arrays for Optical Sensing An Experimental Determination of Critical Power for Self-Focusing of Femtosecond Pulses in Air Using Focal-Spot Measurements Dual-Polarized Reconfigurable Manipulation Based on Flexible-Printed Intelligent Reflection Surface Multi-Array Visible-Light Optical Generalized Spatial Multiplexing–Multiple Input Multiple-Output System with Pearson Coefficient-Based Antenna Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1