F. Cichocki, P. Innocente, V. Sciortino, P. Minelli, F. Taccogna
{"title":"Kinetic modeling of the plasma-wall interaction in the DTT divertor region","authors":"F. Cichocki, P. Innocente, V. Sciortino, P. Minelli, F. Taccogna","doi":"10.1088/1361-6587/ad1a41","DOIUrl":null,"url":null,"abstract":"\n A precise estimate of the local energy fluxes and erosion profiles at the divertor monoblocks of a fusion reactor requires a kinetic modeling of the plasma-wall interaction. Here, a two-dimensional Particle-in-Cell code is used to quantify the particle and energy fluxes and ion impact distribution functions across the divertor monoblocks of the ``Divertor Tokamak Test'' reactor, focusing on poloidal gaps with toroidal beveling. The considered critical locations are close to the strike points at both Inner and Outer Vertical Targets. A worst-case scenario for particle fluxes corresponding to attached plasma conditions and featuring a single-null magnetic configuration is assumed. The separate and cumulative effects of including electron wall emission and ions/electrons collisions with a background neutral gas (recycled at the walls) are also assessed. It is found that a non-negligible energy flux affects the shadowed regions of the monoblocks, especially when accounting for collisions, and that the ion impact distribution functions are strongly influenced by the considered kinetic effects, with important implications on the induced sputtering yield.","PeriodicalId":20239,"journal":{"name":"Plasma Physics and Controlled Fusion","volume":"42 14","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Physics and Controlled Fusion","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6587/ad1a41","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
A precise estimate of the local energy fluxes and erosion profiles at the divertor monoblocks of a fusion reactor requires a kinetic modeling of the plasma-wall interaction. Here, a two-dimensional Particle-in-Cell code is used to quantify the particle and energy fluxes and ion impact distribution functions across the divertor monoblocks of the ``Divertor Tokamak Test'' reactor, focusing on poloidal gaps with toroidal beveling. The considered critical locations are close to the strike points at both Inner and Outer Vertical Targets. A worst-case scenario for particle fluxes corresponding to attached plasma conditions and featuring a single-null magnetic configuration is assumed. The separate and cumulative effects of including electron wall emission and ions/electrons collisions with a background neutral gas (recycled at the walls) are also assessed. It is found that a non-negligible energy flux affects the shadowed regions of the monoblocks, especially when accounting for collisions, and that the ion impact distribution functions are strongly influenced by the considered kinetic effects, with important implications on the induced sputtering yield.
期刊介绍:
Plasma Physics and Controlled Fusion covers all aspects of the physics of hot, highly ionised plasmas. This includes results of current experimental and theoretical research on all aspects of the physics of high-temperature plasmas and of controlled nuclear fusion, including the basic phenomena in highly-ionised gases in the laboratory, in the ionosphere and in space, in magnetic-confinement and inertial-confinement fusion as well as related diagnostic methods.
Papers with a technological emphasis, for example in such topics as plasma control, fusion technology and diagnostics, are welcomed when the plasma physics is an integral part of the paper or when the technology is unique to plasma applications or new to the field of plasma physics. Papers on dusty plasma physics are welcome when there is a clear relevance to fusion.