{"title":"Quasiconvexity in a model of fiber-reinforced solids based on Cosserat elasticity theory","authors":"M. Shirani, Mircea Bîrsan, D. Steigmann","doi":"10.1177/10812865231217640","DOIUrl":null,"url":null,"abstract":"The quasiconvexity inequality associated with energy minimizers is derived in the context of a nonlinear Cosserat elasticity theory for fiber-reinforced elastic solids in which the intrinsic flexural and torsional elasticities of the fibers are taken into account explicitly. The derivation accounts for non-standard kinematic constraints, associated with the materiality of the embedded fibers, connecting the deformation gradient and the Cosserat rotation field.","PeriodicalId":49854,"journal":{"name":"Mathematics and Mechanics of Solids","volume":"142 24","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10812865231217640","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The quasiconvexity inequality associated with energy minimizers is derived in the context of a nonlinear Cosserat elasticity theory for fiber-reinforced elastic solids in which the intrinsic flexural and torsional elasticities of the fibers are taken into account explicitly. The derivation accounts for non-standard kinematic constraints, associated with the materiality of the embedded fibers, connecting the deformation gradient and the Cosserat rotation field.
期刊介绍:
Mathematics and Mechanics of Solids is an international peer-reviewed journal that publishes the highest quality original innovative research in solid mechanics and materials science.
The central aim of MMS is to publish original, well-written and self-contained research that elucidates the mechanical behaviour of solids with particular emphasis on mathematical principles. This journal is a member of the Committee on Publication Ethics (COPE).