A Novel Machine Learning-Based Prediction Method for Early Detection and Diagnosis of Congenital Heart Disease Using ECG Signal Processing

IF 4.2 Q1 ENGINEERING, MULTIDISCIPLINARY Technologies Pub Date : 2024-01-02 DOI:10.3390/technologies12010004
Prabu Pachiyannan, M. Alsulami, D. Alsadie, Abdul Khader Jilani Saudagar, Mohammed Alkhathami, R. C. Poonia
{"title":"A Novel Machine Learning-Based Prediction Method for Early Detection and Diagnosis of Congenital Heart Disease Using ECG Signal Processing","authors":"Prabu Pachiyannan, M. Alsulami, D. Alsadie, Abdul Khader Jilani Saudagar, Mohammed Alkhathami, R. C. Poonia","doi":"10.3390/technologies12010004","DOIUrl":null,"url":null,"abstract":"Congenital heart disease (CHD) represents a multifaceted medical condition that requires early detection and diagnosis for effective management, given its diverse presentations and subtle symptoms that manifest from birth. This research article introduces a groundbreaking healthcare application, the Machine Learning-based Congenital Heart Disease Prediction Method (ML-CHDPM), tailored to address these challenges and expedite the timely identification and classification of CHD in pregnant women. The ML-CHDPM model leverages state-of-the-art machine learning techniques to categorize CHD cases, taking into account pertinent clinical and demographic factors. Trained on a comprehensive dataset, the model captures intricate patterns and relationships, resulting in precise predictions and classifications. The evaluation of the model’s performance encompasses sensitivity, specificity, accuracy, and the area under the receiver operating characteristic curve. Remarkably, the findings underscore the ML-CHDPM’s superiority across six pivotal metrics: accuracy, precision, recall, specificity, false positive rate (FPR), and false negative rate (FNR). The method achieves an average accuracy rate of 94.28%, precision of 87.54%, recall rate of 96.25%, specificity rate of 91.74%, FPR of 8.26%, and FNR of 3.75%. These outcomes distinctly demonstrate the ML-CHDPM’s effectiveness in reliably predicting and classifying CHD cases. This research marks a significant stride toward early detection and diagnosis, harnessing advanced machine learning techniques within the realm of ECG signal processing, specifically tailored to pregnant women.","PeriodicalId":101448,"journal":{"name":"Technologies","volume":"129 3","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technologies","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.3390/technologies12010004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Congenital heart disease (CHD) represents a multifaceted medical condition that requires early detection and diagnosis for effective management, given its diverse presentations and subtle symptoms that manifest from birth. This research article introduces a groundbreaking healthcare application, the Machine Learning-based Congenital Heart Disease Prediction Method (ML-CHDPM), tailored to address these challenges and expedite the timely identification and classification of CHD in pregnant women. The ML-CHDPM model leverages state-of-the-art machine learning techniques to categorize CHD cases, taking into account pertinent clinical and demographic factors. Trained on a comprehensive dataset, the model captures intricate patterns and relationships, resulting in precise predictions and classifications. The evaluation of the model’s performance encompasses sensitivity, specificity, accuracy, and the area under the receiver operating characteristic curve. Remarkably, the findings underscore the ML-CHDPM’s superiority across six pivotal metrics: accuracy, precision, recall, specificity, false positive rate (FPR), and false negative rate (FNR). The method achieves an average accuracy rate of 94.28%, precision of 87.54%, recall rate of 96.25%, specificity rate of 91.74%, FPR of 8.26%, and FNR of 3.75%. These outcomes distinctly demonstrate the ML-CHDPM’s effectiveness in reliably predicting and classifying CHD cases. This research marks a significant stride toward early detection and diagnosis, harnessing advanced machine learning techniques within the realm of ECG signal processing, specifically tailored to pregnant women.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的新型预测方法,利用心电图信号处理实现先天性心脏病的早期检测和诊断
先天性心脏病(CHD)是一种多方面的疾病,由于其表现形式多种多样,而且从出生开始就会出现一些细微的症状,因此需要及早发现和诊断,以便进行有效的治疗。本研究文章介绍了一种开创性的医疗保健应用--基于机器学习的先天性心脏病预测方法(ML-CHDPM),该方法专为应对这些挑战而量身定制,可加快对孕妇先天性心脏病的及时识别和分类。ML-CHDPM 模型利用最先进的机器学习技术对先天性心脏病病例进行分类,同时考虑到相关的临床和人口学因素。通过对综合数据集的训练,该模型捕捉到了错综复杂的模式和关系,从而进行了精确的预测和分类。对模型性能的评估包括灵敏度、特异性、准确性和接收者工作特征曲线下的面积。值得注意的是,研究结果强调了 ML-CHDPM 在准确度、精确度、召回率、特异性、假阳性率 (FPR) 和假阴性率 (FNR) 这六个关键指标上的优越性。该方法的平均准确率为 94.28%,精确率为 87.54%,召回率为 96.25%,特异率为 91.74%,FPR 为 8.26%,FNR 为 3.75%。这些结果充分证明了 ML-CHDPM 在可靠预测和分类心脏病病例方面的有效性。这项研究标志着在心电图信号处理领域利用先进的机器学习技术,专为孕妇量身定制的早期检测和诊断取得了重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.70
自引率
0.00%
发文量
0
期刊最新文献
Editorial for the Special Issue “Data Science and Big Data in Biology, Physical Science and Engineering” Extended-Window Algorithms for Model Prediction Applied to Hybrid Power Systems Towards a Bidirectional Mexican Sign Language–Spanish Translation System: A Deep Learning Approach Revisiting Probabilistic Latent Semantic Analysis: Extensions, Challenges and Insights A Novel Machine Learning-Based Prediction Method for Early Detection and Diagnosis of Congenital Heart Disease Using ECG Signal Processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1