Hybrid approach of type-2 fuzzy inference system and PSO in asthma disease

Tarun Kumar , Anirudh Kumar Bhargava , M.K. Sharma , Nitesh Dhiman , Neha Nain
{"title":"Hybrid approach of type-2 fuzzy inference system and PSO in asthma disease","authors":"Tarun Kumar ,&nbsp;Anirudh Kumar Bhargava ,&nbsp;M.K. Sharma ,&nbsp;Nitesh Dhiman ,&nbsp;Neha Nain","doi":"10.1016/j.ceh.2024.01.001","DOIUrl":null,"url":null,"abstract":"<div><p>This research work presents a hybrid approach combining a type-2 fuzzy inference system with particle swarm optimization (PSO) to develop a type-2 fuzzy optimized inference system, specifically tailored for asthma patient data. Addressing the inherent uncertainty in medical diagnostics, this model enhances traditional type-1 fuzzy logic by incorporating ambiguity into linguistic variables and utilizing type-2 fuzzy if-then rules. The system is trained to minimize diagnostic error in asthma disease identification. Applied to a dataset comprising eight medical entities from asthma patients, the model demonstrates substantial accuracy improvements. Numerical computations validate the system, showing a decrease in error rate from 1.445 to 0.03, indicating a significant enhancement in diagnostic precision. These results underscore the potential of our model in medical diagnostic problems, providing a novel and effective tool for tackling the complexities of asthma diagnosis.</p></div>","PeriodicalId":100268,"journal":{"name":"Clinical eHealth","volume":"7 ","pages":"Pages 15-26"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2588914124000017/pdfft?md5=305cae56b1c8d6a5f0ff62a1ec33c6ad&pid=1-s2.0-S2588914124000017-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical eHealth","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588914124000017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research work presents a hybrid approach combining a type-2 fuzzy inference system with particle swarm optimization (PSO) to develop a type-2 fuzzy optimized inference system, specifically tailored for asthma patient data. Addressing the inherent uncertainty in medical diagnostics, this model enhances traditional type-1 fuzzy logic by incorporating ambiguity into linguistic variables and utilizing type-2 fuzzy if-then rules. The system is trained to minimize diagnostic error in asthma disease identification. Applied to a dataset comprising eight medical entities from asthma patients, the model demonstrates substantial accuracy improvements. Numerical computations validate the system, showing a decrease in error rate from 1.445 to 0.03, indicating a significant enhancement in diagnostic precision. These results underscore the potential of our model in medical diagnostic problems, providing a novel and effective tool for tackling the complexities of asthma diagnosis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
哮喘病中的 2 型模糊推理系统和 PSO 混合方法
这项研究工作提出了一种混合方法,将第二类模糊推理系统与粒子群优化(PSO)相结合,开发出一种专门针对哮喘患者数据的第二类模糊优化推理系统。针对医疗诊断中固有的不确定性,该模型通过将模糊性纳入语言变量并利用第二类模糊 "如果-那么 "规则,增强了传统的第一类模糊逻辑。该系统经过训练,能最大限度地减少哮喘疾病识别中的诊断错误。该模型应用于由哮喘患者的八个医疗实体组成的数据集,其准确性有了大幅提高。数值计算验证了该系统,显示错误率从 1.445 降至 0.03,表明诊断精确度显著提高。这些结果凸显了我们的模型在医疗诊断问题上的潜力,为解决复杂的哮喘诊断问题提供了一种新颖而有效的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.10
自引率
0.00%
发文量
0
期刊最新文献
Glu4: An open-source package for real-time forecasting and alerting post-bariatric hypoglycemia based on continuous glucose monitoring Enhancing thyroid disease prediction and comorbidity management through advanced machine learning frameworks International collaboration in an online digital health education for undergraduate nursing students in China: Results and recommendations for course development from World eHealth Living Lab A survey on define daily dose of watch- and access-category antibiotics in two Indonesian hospitals following the implementation of digital antimicrobial stewardship tool Development of a mobile health application for epilepsy self-management: Focus group discussion and validity of study results
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1