Cost-aware cloud workflow scheduling using DRL and simulated annealing

IF 7.5 2区 计算机科学 Q1 TELECOMMUNICATIONS Digital Communications and Networks Pub Date : 2024-12-01 DOI:10.1016/j.dcan.2023.12.009
Yan Gu , Feng Cheng , Lijie Yang , Junhui Xu , Xiaomin Chen , Long Cheng
{"title":"Cost-aware cloud workflow scheduling using DRL and simulated annealing","authors":"Yan Gu ,&nbsp;Feng Cheng ,&nbsp;Lijie Yang ,&nbsp;Junhui Xu ,&nbsp;Xiaomin Chen ,&nbsp;Long Cheng","doi":"10.1016/j.dcan.2023.12.009","DOIUrl":null,"url":null,"abstract":"<div><div>Cloud workloads are highly dynamic and complex, making task scheduling in cloud computing a challenging problem. While several scheduling algorithms have been proposed in recent years, they are mainly designed to handle batch tasks and not well-suited for real-time workloads. To address this issue, researchers have started exploring the use of Deep Reinforcement Learning (DRL). However, the existing models are limited in handling independent tasks and cannot process workflows, which are prevalent in cloud computing and consist of related subtasks. In this paper, we propose SA-DQN, a scheduling approach specifically designed for real-time cloud workflows. Our approach seamlessly integrates the Simulated Annealing (SA) algorithm and Deep Q-Network (DQN) algorithm. The SA algorithm is employed to determine an optimal execution order of subtasks in a cloud server, serving as a crucial feature of the task for the neural network to learn. We provide a detailed design of our approach and show that SA-DQN outperforms existing algorithms in terms of handling real-time cloud workflows through experimental results.</div></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":"10 6","pages":"Pages 1590-1599"},"PeriodicalIF":7.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864823001840","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Cloud workloads are highly dynamic and complex, making task scheduling in cloud computing a challenging problem. While several scheduling algorithms have been proposed in recent years, they are mainly designed to handle batch tasks and not well-suited for real-time workloads. To address this issue, researchers have started exploring the use of Deep Reinforcement Learning (DRL). However, the existing models are limited in handling independent tasks and cannot process workflows, which are prevalent in cloud computing and consist of related subtasks. In this paper, we propose SA-DQN, a scheduling approach specifically designed for real-time cloud workflows. Our approach seamlessly integrates the Simulated Annealing (SA) algorithm and Deep Q-Network (DQN) algorithm. The SA algorithm is employed to determine an optimal execution order of subtasks in a cloud server, serving as a crucial feature of the task for the neural network to learn. We provide a detailed design of our approach and show that SA-DQN outperforms existing algorithms in terms of handling real-time cloud workflows through experimental results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 DRL 和模拟退火进行成本感知云工作流调度
云工作负载是高度动态和复杂的,使得云计算中的任务调度成为一个具有挑战性的问题。虽然近年来提出了几种调度算法,但它们主要用于处理批处理任务,不适合实时工作负载。为了解决这个问题,研究人员已经开始探索使用深度强化学习(DRL)。然而,现有模型在处理独立任务方面受到限制,不能处理工作流,而工作流在云计算中很普遍,并且由相关的子任务组成。在本文中,我们提出了SA-DQN,一种专门为实时云工作流设计的调度方法。我们的方法无缝集成了模拟退火(SA)算法和深度Q-Network (DQN)算法。SA算法用于确定云服务器中子任务的最优执行顺序,这是神经网络学习任务的关键特征。我们提供了我们方法的详细设计,并通过实验结果表明,SA-DQN在处理实时云工作流方面优于现有算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Digital Communications and Networks
Digital Communications and Networks Computer Science-Hardware and Architecture
CiteScore
12.80
自引率
5.10%
发文量
915
审稿时长
30 weeks
期刊介绍: Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus. In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field. In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.
期刊最新文献
Editorial Board Cross-domain resources optimization for hybrid edge computing networks: Federated DRL approach Radio map estimation using a CycleGAN-based learning framework for 6G wireless communication Autonomous network management for 6G communication: A comprehensive survey Pre-filters design for weighted sum rate maximization in multiuser time reversal downlink systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1