Optimization Design in RIS-Assisted Integrated Satellite-UAV-Served 6G IoT: A Deep Reinforcement Learning Approach

Min Wu, K. Guo, Xingwang Li, Ali Nauman, Kang An, Ji Wang
{"title":"Optimization Design in RIS-Assisted Integrated Satellite-UAV-Served 6G IoT: A Deep Reinforcement Learning Approach","authors":"Min Wu, K. Guo, Xingwang Li, Ali Nauman, Kang An, Ji Wang","doi":"10.1109/IOTM.001.2300111","DOIUrl":null,"url":null,"abstract":"Satellite networks have been emerged as a critical part of the next-generation wireless networks. However, the high transmission latency, highly dynamic channel conditions and energy resource constraints of Internet of Things (IoT) devices pose a challenge to performance improvements. To tackle above issues, technologies such as integrated satellite-unmanned aerial vehicle-terrestrial networks (IS-UAV-TNs), deep reinforcement learning (DRL), reconfigurable intelligent surface (RIS) are highly anticipated in 6G IoT. In this article, we consider the application of RIS to IS-UAV-TNs to reshape wireless channels by controlling the phase shift of the scattering elements. The dynamic configuration of the RIS reflection unit poses a high-dimensional problem, making beamforming optimization challenging. We focus on discussing the optimization method of integrating DRL in RIS-assisted IS-UAV-TNs, which offers flexibility in scenarios where precise channel state information (CSI) is unknown. To illustrate the advantage of the DRL framework in RIS-assisted IS-UAV-TNs, we design a representative communication scenario, where the results are provided according to the considered scenario. Finally, potential future research directions and challenges are presented.","PeriodicalId":235472,"journal":{"name":"IEEE Internet of Things Magazine","volume":"4 1","pages":"12-18"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Internet of Things Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IOTM.001.2300111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Satellite networks have been emerged as a critical part of the next-generation wireless networks. However, the high transmission latency, highly dynamic channel conditions and energy resource constraints of Internet of Things (IoT) devices pose a challenge to performance improvements. To tackle above issues, technologies such as integrated satellite-unmanned aerial vehicle-terrestrial networks (IS-UAV-TNs), deep reinforcement learning (DRL), reconfigurable intelligent surface (RIS) are highly anticipated in 6G IoT. In this article, we consider the application of RIS to IS-UAV-TNs to reshape wireless channels by controlling the phase shift of the scattering elements. The dynamic configuration of the RIS reflection unit poses a high-dimensional problem, making beamforming optimization challenging. We focus on discussing the optimization method of integrating DRL in RIS-assisted IS-UAV-TNs, which offers flexibility in scenarios where precise channel state information (CSI) is unknown. To illustrate the advantage of the DRL framework in RIS-assisted IS-UAV-TNs, we design a representative communication scenario, where the results are provided according to the considered scenario. Finally, potential future research directions and challenges are presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RIS 辅助集成卫星-无人机服务 6G 物联网中的优化设计:深度强化学习方法
卫星网络已成为下一代无线网络的重要组成部分。然而,物联网(IoT)设备的高传输延迟、高动态信道条件和能源资源限制对性能提升构成了挑战。为解决上述问题,集成卫星-无人机-地面网络(IS-UAV-TNs)、深度强化学习(DRL)、可重构智能表面(RIS)等技术在 6G 物联网中备受期待。在本文中,我们考虑将 RIS 应用于 IS-UAV-TN,通过控制散射元件的相移来重塑无线信道。RIS 反射单元的动态配置提出了一个高维问题,使得波束成形优化具有挑战性。我们重点讨论在 RIS 辅助 IS-UAV-TN 中集成 DRL 的优化方法,这种方法在精确信道状态信息(CSI)未知的情况下具有灵活性。为了说明 DRL 框架在 RIS 辅助 IS-UAV-TN 中的优势,我们设计了一个具有代表性的通信场景,并根据所考虑的场景提供了结果。最后,介绍了潜在的未来研究方向和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ubiquitous Integrated Sensing and Communications for Massive MIMO LEO Satellite Systems AI for Critical Infrastructure Security: Concepts, Challenges, and Future Directions Mentor's Musings on Integrated Sensing & Communication - A Major Leap Towards an Ubiquitous IoT Paradigm IEEE Medala of Honor Cover 4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1