{"title":"Selective uptake and desorption of carbon dioxide in carbon honeycombs of different sizes","authors":"N. Krainyukova, D. G. Diachenko, E. A. Kotomin","doi":"10.1063/10.0023898","DOIUrl":null,"url":null,"abstract":"Carbon honeycombs (CHs) are new carbon cellular structures, very promising in many respects, in particular, for high-capacity storage of various materials, especially in gaseous and liquid forms. In this study, we report a strong uptake of carbon dioxide kept inside carbon honeycomb matrices up to temperatures about three times higher as compared with CO2 desorption at ≈ 90 K from flat solid surfaces in vacuum where we conduct our high-energy electron diffraction experiments. Desorption of CO2 from CH matrices upon heating exhibits non-monotone behavior, which is ascribed to carbon dioxide release from CH channels of different sizes. It is shown that modeling of CO2 uptake, storage, and redistribution in the thin CH channels of certain types and orientations upon heating can explain experimental observations.","PeriodicalId":18077,"journal":{"name":"Low Temperature Physics","volume":"85 20","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Low Temperature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/10.0023898","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon honeycombs (CHs) are new carbon cellular structures, very promising in many respects, in particular, for high-capacity storage of various materials, especially in gaseous and liquid forms. In this study, we report a strong uptake of carbon dioxide kept inside carbon honeycomb matrices up to temperatures about three times higher as compared with CO2 desorption at ≈ 90 K from flat solid surfaces in vacuum where we conduct our high-energy electron diffraction experiments. Desorption of CO2 from CH matrices upon heating exhibits non-monotone behavior, which is ascribed to carbon dioxide release from CH channels of different sizes. It is shown that modeling of CO2 uptake, storage, and redistribution in the thin CH channels of certain types and orientations upon heating can explain experimental observations.
期刊介绍:
Guided by an international editorial board, Low Temperature Physics (LTP) communicates the results of important experimental and theoretical studies conducted at low temperatures. LTP offers key work in such areas as superconductivity, magnetism, lattice dynamics, quantum liquids and crystals, cryocrystals, low-dimensional and disordered systems, electronic properties of normal metals and alloys, and critical phenomena. The journal publishes original articles on new experimental and theoretical results as well as review articles, brief communications, memoirs, and biographies.
Low Temperature Physics, a translation of the copyrighted Journal FIZIKA NIZKIKH TEMPERATUR, is a monthly journal containing English reports of current research in the field of the low temperature physics. The translation began with the 1975 issues. One volume is published annually beginning with the January issues.