S. Udachan, S. B. Kolavekar, N. H. Ayachit, L. A. Udachan, S. Siddanna, S. S. Kolkundi, K. Naveen Kumar
{"title":"Comparative study on the effect of substrates on electrical properties of tin and chromium thin films","authors":"S. Udachan, S. B. Kolavekar, N. H. Ayachit, L. A. Udachan, S. Siddanna, S. S. Kolkundi, K. Naveen Kumar","doi":"10.1063/10.0023890","DOIUrl":null,"url":null,"abstract":"In thin film technology, substrate materials happen to be one of the deposition parameters that determine the physical properties of films. Hence, soda-lime glass and quartz continue to be the widely utilized substrate materials because of their high-frequency performance, price, and surface quality. For certain applications, various substrate materials that provide an acceptable compromise for the work at hand are required. Soda-lime glass and quartz have been chosen as the substrates for the tin and chromium thin films that will be produced via thermal evaporation in a vacuum. A comparative study on the electrical properties of chromium films was made in the light of Fuchs–Sondheimer and Mayadas–Shatzkes theories. Numerous physical properties, including resistivity of infinitely thick film, sticking coefficient, conduction electron mean free, etc., may be determined from resistivity-thickness data.","PeriodicalId":18077,"journal":{"name":"Low Temperature Physics","volume":"6 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Low Temperature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/10.0023890","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In thin film technology, substrate materials happen to be one of the deposition parameters that determine the physical properties of films. Hence, soda-lime glass and quartz continue to be the widely utilized substrate materials because of their high-frequency performance, price, and surface quality. For certain applications, various substrate materials that provide an acceptable compromise for the work at hand are required. Soda-lime glass and quartz have been chosen as the substrates for the tin and chromium thin films that will be produced via thermal evaporation in a vacuum. A comparative study on the electrical properties of chromium films was made in the light of Fuchs–Sondheimer and Mayadas–Shatzkes theories. Numerous physical properties, including resistivity of infinitely thick film, sticking coefficient, conduction electron mean free, etc., may be determined from resistivity-thickness data.
期刊介绍:
Guided by an international editorial board, Low Temperature Physics (LTP) communicates the results of important experimental and theoretical studies conducted at low temperatures. LTP offers key work in such areas as superconductivity, magnetism, lattice dynamics, quantum liquids and crystals, cryocrystals, low-dimensional and disordered systems, electronic properties of normal metals and alloys, and critical phenomena. The journal publishes original articles on new experimental and theoretical results as well as review articles, brief communications, memoirs, and biographies.
Low Temperature Physics, a translation of the copyrighted Journal FIZIKA NIZKIKH TEMPERATUR, is a monthly journal containing English reports of current research in the field of the low temperature physics. The translation began with the 1975 issues. One volume is published annually beginning with the January issues.