Chemoselective Photocatalytic Reduction of Furfural to Furfuryl Alcohol Under the Influence of Visible Light with the Participation of Nanocrystalline Carbon Nitride and Palladium Co-Catalysts
G. V. Korzhak, T. R. Stara, O. S. Kutsenko, P. O. Kuzema, V. M. Anishchenko, S. Ya. Kuchmiy
{"title":"Chemoselective Photocatalytic Reduction of Furfural to Furfuryl Alcohol Under the Influence of Visible Light with the Participation of Nanocrystalline Carbon Nitride and Palladium Co-Catalysts","authors":"G. V. Korzhak, T. R. Stara, O. S. Kutsenko, P. O. Kuzema, V. M. Anishchenko, S. Ya. Kuchmiy","doi":"10.1007/s11237-024-09785-w","DOIUrl":null,"url":null,"abstract":"<p>It is established that crystalline graphite-like carbon nitride (CGCN) exhibits high photocatalytic activity in the process of chemoselective reduction of furfural to furfuryl alcohol in the presence of co-catalysts under the action of visible light by electron-donating substrates, such as methanol/water and ethanol/water, in an acidic medium. When palladium chloride additives are introduced into the reaction mixture, the rate of the process is higher than with the participation of the Pd/SiO<sub>2</sub> co-catalyst. This phenomenon may be due to the in situ formation of the CGCN/Pd<sup>0</sup> composite photocatalyst in the presence of PdCl<sub>2</sub>, where the photogenerated charges are better separated than in the CGCN-Pd/SiO<sub>2</sub> system. The effective quantum yield of furfural reduction is 56% at λ<sub>irr</sub> = 405 nm) under optimal conditions.</p>","PeriodicalId":796,"journal":{"name":"Theoretical and Experimental Chemistry","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Experimental Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11237-024-09785-w","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
It is established that crystalline graphite-like carbon nitride (CGCN) exhibits high photocatalytic activity in the process of chemoselective reduction of furfural to furfuryl alcohol in the presence of co-catalysts under the action of visible light by electron-donating substrates, such as methanol/water and ethanol/water, in an acidic medium. When palladium chloride additives are introduced into the reaction mixture, the rate of the process is higher than with the participation of the Pd/SiO2 co-catalyst. This phenomenon may be due to the in situ formation of the CGCN/Pd0 composite photocatalyst in the presence of PdCl2, where the photogenerated charges are better separated than in the CGCN-Pd/SiO2 system. The effective quantum yield of furfural reduction is 56% at λirr = 405 nm) under optimal conditions.
期刊介绍:
Theoretical and Experimental Chemistry is a journal for the rapid publication of research communications and reviews on modern problems of physical chemistry such as:
a) physicochemical bases, principles, and methods for creation of novel processes, compounds, and materials;
b) physicochemical principles of chemical process control, influence of external physical forces on chemical reactions;
c) physical nanochemistry, nanostructures and nanomaterials, functional nanomaterials, size-dependent properties of materials.