Qiongqiong Ren, Zejun Fan, Rong Han, Meihui Sang, Changxing Ma, Xiaoli Zhao, Shenlin Wang
{"title":"A strategy for producing isotopically labeled peptides with antimicrobial activity or with short in vivo lifetime in Escherichia coli","authors":"Qiongqiong Ren, Zejun Fan, Rong Han, Meihui Sang, Changxing Ma, Xiaoli Zhao, Shenlin Wang","doi":"10.1002/pep2.24340","DOIUrl":null,"url":null,"abstract":"Engineered <i>Escherichia coli</i> (<i>E. coli</i>) strains have been widely used to produce isotopically labeled peptides for NMR characterization on their structures and interactions. However, production of antimicrobial peptides (AMPs) by <i>E. coli</i> is still challenging, because AMPs are toxic to <i>E. coli</i> host and would lead to cell death after induction. On the other hand, expression of short peptides in <i>E. coli</i> host often encounter problems of the short in vivo lifetime of the peptides, which were rapidly degraded by endogenous enzymes during expression and purification steps. This report presents a practical method for overcoming these bottlenecks to enable <i>E. coli</i> to express AMPs and peptides that have short in vivo lifetime. This design uses the fusion of thioredoxin tags at both the N- and C-termini of the target peptides. The steric effect of the large soluble tags at both ends of the peptide reduces peptide accessibility, thereby enhancing their in vivo stability and eliminating the toxicity associated with AMPs. The approach was validated using an AMP A3K/L7K-LAH4 (K3K7) and a membrane fusion peptide (FP), which is a segment of the spike protein of SARS-CoV-2 and functions in fusing viral membranes and host cell membranes. Fusion expression of K3K7 with a thioredoxin tag only at the N-terminal resulted in high toxicity to the host cells, leading to impaired cell growth and a failure to obtain expressed fusion protein. In contrast, the fusion proteins from both termini were successfully expressed and purified. In the case of the FP, the fusion of thioredoxin at both termini significantly enhanced its stability, protecting it from enzymatic degradation during expression and purification steps. On the contrary, the FP with thioredoxin fused only at the N-terminal was found to be unstable in <i>E. coli</i> host strains. As stable isotope labeling on peptide is essentially important in NMR-based structure and interaction studies, we also demonstrated that the developed approach enables efficient <sup>15</sup>N labeling for NMR studies. This strategy may also be extended to produce other challenging peptides.","PeriodicalId":19825,"journal":{"name":"Peptide Science","volume":"16 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Peptide Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pep2.24340","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Engineered Escherichia coli (E. coli) strains have been widely used to produce isotopically labeled peptides for NMR characterization on their structures and interactions. However, production of antimicrobial peptides (AMPs) by E. coli is still challenging, because AMPs are toxic to E. coli host and would lead to cell death after induction. On the other hand, expression of short peptides in E. coli host often encounter problems of the short in vivo lifetime of the peptides, which were rapidly degraded by endogenous enzymes during expression and purification steps. This report presents a practical method for overcoming these bottlenecks to enable E. coli to express AMPs and peptides that have short in vivo lifetime. This design uses the fusion of thioredoxin tags at both the N- and C-termini of the target peptides. The steric effect of the large soluble tags at both ends of the peptide reduces peptide accessibility, thereby enhancing their in vivo stability and eliminating the toxicity associated with AMPs. The approach was validated using an AMP A3K/L7K-LAH4 (K3K7) and a membrane fusion peptide (FP), which is a segment of the spike protein of SARS-CoV-2 and functions in fusing viral membranes and host cell membranes. Fusion expression of K3K7 with a thioredoxin tag only at the N-terminal resulted in high toxicity to the host cells, leading to impaired cell growth and a failure to obtain expressed fusion protein. In contrast, the fusion proteins from both termini were successfully expressed and purified. In the case of the FP, the fusion of thioredoxin at both termini significantly enhanced its stability, protecting it from enzymatic degradation during expression and purification steps. On the contrary, the FP with thioredoxin fused only at the N-terminal was found to be unstable in E. coli host strains. As stable isotope labeling on peptide is essentially important in NMR-based structure and interaction studies, we also demonstrated that the developed approach enables efficient 15N labeling for NMR studies. This strategy may also be extended to produce other challenging peptides.
Peptide ScienceBiochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
5.20
自引率
4.20%
发文量
36
期刊介绍:
The aim of Peptide Science is to publish significant original research papers and up-to-date reviews covering the entire field of peptide research. Peptide Science provides a forum for papers exploring all aspects of peptide synthesis, materials, structure and bioactivity, including the use of peptides in exploring protein functions and protein-protein interactions. By incorporating both experimental and theoretical studies across the whole spectrum of peptide science, the journal serves the interdisciplinary biochemical, biomaterials, biophysical and biomedical research communities.
Peptide Science is the official journal of the American Peptide Society.