Almost Congruent Triangles

IF 0.6 3区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS Discrete & Computational Geometry Pub Date : 2024-01-11 DOI:10.1007/s00454-023-00623-9
{"title":"Almost Congruent Triangles","authors":"","doi":"10.1007/s00454-023-00623-9","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Almost 50 years ago Erdős and Purdy asked the following question: Given <em>n</em> points in the plane, how many triangles can be approximate congruent to equilateral triangles? They pointed out that by dividing the points evenly into three small clusters built around the three vertices of a fixed equilateral triangle, one gets at least <span> <span>\\(\\left\\lfloor \\frac{n}{3} \\right\\rfloor \\cdot \\left\\lfloor \\frac{n+1}{3} \\right\\rfloor \\cdot \\left\\lfloor \\frac{n+2}{3} \\right\\rfloor \\)</span> </span> such approximate copies. In this paper we provide a matching upper bound and thereby answer their question. More generally, for every triangle <em>T</em> we determine the maximum number of approximate congruent triangles to <em>T</em> in a point set of size <em>n</em>. Parts of our proof are based on hypergraph Turán theory: for each point set in the plane and a triangle <em>T</em>, we construct a 3-uniform hypergraph <span> <span>\\(\\mathcal {H}=\\mathcal {H}(T)\\)</span> </span>, which contains no hypergraph as a subgraph from a family of forbidden hypergraphs <span> <span>\\(\\mathcal {F}=\\mathcal {F}(T)\\)</span> </span>. Our upper bound on the number of edges of <span> <span>\\(\\mathcal {H}\\)</span> </span> will determine the maximum number of triangles that are approximate congruent to <em>T</em>.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-023-00623-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Almost 50 years ago Erdős and Purdy asked the following question: Given n points in the plane, how many triangles can be approximate congruent to equilateral triangles? They pointed out that by dividing the points evenly into three small clusters built around the three vertices of a fixed equilateral triangle, one gets at least \(\left\lfloor \frac{n}{3} \right\rfloor \cdot \left\lfloor \frac{n+1}{3} \right\rfloor \cdot \left\lfloor \frac{n+2}{3} \right\rfloor \) such approximate copies. In this paper we provide a matching upper bound and thereby answer their question. More generally, for every triangle T we determine the maximum number of approximate congruent triangles to T in a point set of size n. Parts of our proof are based on hypergraph Turán theory: for each point set in the plane and a triangle T, we construct a 3-uniform hypergraph \(\mathcal {H}=\mathcal {H}(T)\) , which contains no hypergraph as a subgraph from a family of forbidden hypergraphs \(\mathcal {F}=\mathcal {F}(T)\) . Our upper bound on the number of edges of \(\mathcal {H}\) will determine the maximum number of triangles that are approximate congruent to T.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
几乎全等的三角形
摘要 将近 50 年前,Erdős 和 Purdy 提出了以下问题:给定平面上的 n 个点,有多少个三角形可以近似全等?他们指出,通过把点平均分成围绕固定等边三角形三个顶点的三个小群,至少可以得到(\left\lfloor \frac{n}{3}\cdot \left\lfloor \frac{n+1}{3}\(rightrfloor) (cdot) (leftlfloor) (frac{n+2}{3}\这样的近似副本。在本文中,我们提供了一个匹配的上界,从而回答了他们的问题。更广义地说,对于每个三角形 T,我们都要确定在大小为 n 的点集中与 T 近似全等的三角形的最大数目。我们的证明部分基于超图图兰理论:对于平面中的每个点集和三角形 T,我们都要构造一个 3-Uniform 超图 \(\mathcal {H}=\mathcal {H}(T)\) ,其中不包含任何超图,因为它是一个全等的三角形。(\mathcal{F}=\mathcal{F}(T)\))的子图中不包含任何超图。我们对 \(\mathcal {H}\) 边缘数量的上限将决定与 T 近似全等的三角形的最大数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Discrete & Computational Geometry
Discrete & Computational Geometry 数学-计算机:理论方法
CiteScore
1.80
自引率
12.50%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.
期刊最新文献
The Complexity of Order Type Isomorphism Volume Computation for Meissner Polyhedra and Applications Erdős–Szekeres-Type Problems in the Real Projective Plane The Structure of Metrizable Graphs Estimating the Convex Hull of the Image of a Set with Smooth Boundary: Error Bounds and Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1