The Online Saddle Point Problem and Online Convex Optimization with Knapsacks

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-01-12 DOI:10.1287/moor.2018.0330
Adrian Rivera Cardoso, He Wang, Huan Xu
{"title":"The Online Saddle Point Problem and Online Convex Optimization with Knapsacks","authors":"Adrian Rivera Cardoso, He Wang, Huan Xu","doi":"10.1287/moor.2018.0330","DOIUrl":null,"url":null,"abstract":"We study the online saddle point problem, an online learning problem where at each iteration, a pair of actions needs to be chosen without knowledge of the current and future (convex-concave) payoff functions. The objective is to minimize the gap between the cumulative payoffs and the saddle point value of the aggregate payoff function, which we measure using a metric called saddle point regret (SP-Regret). The problem generalizes the online convex optimization framework, but here, we must ensure that both players incur cumulative payoffs close to that of the Nash equilibrium of the sum of the games. We propose an algorithm that achieves SP-Regret proportional to [Formula: see text] in the general case, and [Formula: see text] SP-Regret for the strongly convex-concave case. We also consider the special case where the payoff functions are bilinear and the decision sets are the probability simplex. In this setting, we are able to design algorithms that reduce the bounds on SP-Regret from a linear dependence in the dimension of the problem to a logarithmic one. We also study the problem under bandit feedback and provide an algorithm that achieves sublinear SP-Regret. We then consider an online convex optimization with knapsacks problem motivated by a wide variety of applications, such as dynamic pricing, auctions, and crowdsourcing. We relate this problem to the online saddle point problem and establish [Formula: see text] regret using a primal-dual algorithm.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2018.0330","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We study the online saddle point problem, an online learning problem where at each iteration, a pair of actions needs to be chosen without knowledge of the current and future (convex-concave) payoff functions. The objective is to minimize the gap between the cumulative payoffs and the saddle point value of the aggregate payoff function, which we measure using a metric called saddle point regret (SP-Regret). The problem generalizes the online convex optimization framework, but here, we must ensure that both players incur cumulative payoffs close to that of the Nash equilibrium of the sum of the games. We propose an algorithm that achieves SP-Regret proportional to [Formula: see text] in the general case, and [Formula: see text] SP-Regret for the strongly convex-concave case. We also consider the special case where the payoff functions are bilinear and the decision sets are the probability simplex. In this setting, we are able to design algorithms that reduce the bounds on SP-Regret from a linear dependence in the dimension of the problem to a logarithmic one. We also study the problem under bandit feedback and provide an algorithm that achieves sublinear SP-Regret. We then consider an online convex optimization with knapsacks problem motivated by a wide variety of applications, such as dynamic pricing, auctions, and crowdsourcing. We relate this problem to the online saddle point problem and establish [Formula: see text] regret using a primal-dual algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带包的在线鞍点问题和在线凸优化
我们研究的是在线鞍点问题,这是一个在线学习问题,在每次迭代时,需要在不知道当前和未来(凸-凹)报酬函数的情况下选择一对行动。我们的目标是最大限度地缩小累积回报与总回报函数鞍点值之间的差距,我们使用一种称为鞍点遗憾(SP-Regret)的指标来衡量这一差距。这个问题概括了在线凸优化框架,但在这里,我们必须确保两个博弈者的累计报酬都接近博弈总和的纳什均衡。我们提出了一种算法,在一般情况下,它能达到与[公式:见正文]成比例的 SP-Regret,在强凸-凹情况下,能达到与[公式:见正文]成比例的 SP-Regret。我们还考虑了报酬函数为双线性且决策集为概率单纯形的特殊情况。在这种情况下,我们能够设计算法,将 SP-Regret 的约束条件从问题维度的线性相关降低到对数相关。我们还研究了强盗反馈下的问题,并提供了一种实现亚线性 SP-Regret 的算法。然后,我们考虑了一个在线凸优化与背包问题,该问题受到动态定价、拍卖和众包等广泛应用的启发。我们将这一问题与在线鞍点问题联系起来,并使用一种基元-二元算法建立了[公式:见正文]遗憾。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1