Min Zhu, Nan Zhang, Dandan Ma, Xiaobin Yan, Faqi Zhan, Yuehong Zheng, Xuefeng Lu, Peiqing La
{"title":"Enhancement of thermoelectric properties in Sr0.7Ba0.3Nb2O6−δ-based ceramics via nano-sized Ti as additive","authors":"Min Zhu, Nan Zhang, Dandan Ma, Xiaobin Yan, Faqi Zhan, Yuehong Zheng, Xuefeng Lu, Peiqing La","doi":"10.1063/5.0177326","DOIUrl":null,"url":null,"abstract":"A series of Sr0.7Ba0.3Nb2O6−δ/x wt. % Ti (x = 1, 3, 5, and 10) composite ceramic thermoelectric materials were prepared, and the mechanism for improving their thermoelectric properties was explored. The experimental results demonstrate that nano-additive titanium powder undergoes oxidation to form TiO2 during sintering. However, under annealing in a reducing atmosphere, oxidation reactions further deplete the lattice oxygen, leading to an increased generation of oxygen vacancies and enhanced carrier concentration, ultimately leading to successful resistivity reduction. The samples consistently exhibit low thermal conductivity values below 2.0 W m−1 K−1 due to crystal defects, complex structure, and phonon scattering at the grain boundaries. The sample doped with 5 wt. %. Ti exhibits the lowest resistivity and highest PF value (409.3 μW/m K2 at 1073 K). Consequently, the figure of merit of Sr0.7Ba0.3Nb2O6−δ with 5 wt. % Ti attains its maximum value of 0.30 at 1073 K, representing a 50% increase compared to that of the undoped sample Sr0.7Ba0.3Nb2O6−δ (0.20 at 1073 K).","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"8 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0177326","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
A series of Sr0.7Ba0.3Nb2O6−δ/x wt. % Ti (x = 1, 3, 5, and 10) composite ceramic thermoelectric materials were prepared, and the mechanism for improving their thermoelectric properties was explored. The experimental results demonstrate that nano-additive titanium powder undergoes oxidation to form TiO2 during sintering. However, under annealing in a reducing atmosphere, oxidation reactions further deplete the lattice oxygen, leading to an increased generation of oxygen vacancies and enhanced carrier concentration, ultimately leading to successful resistivity reduction. The samples consistently exhibit low thermal conductivity values below 2.0 W m−1 K−1 due to crystal defects, complex structure, and phonon scattering at the grain boundaries. The sample doped with 5 wt. %. Ti exhibits the lowest resistivity and highest PF value (409.3 μW/m K2 at 1073 K). Consequently, the figure of merit of Sr0.7Ba0.3Nb2O6−δ with 5 wt. % Ti attains its maximum value of 0.30 at 1073 K, representing a 50% increase compared to that of the undoped sample Sr0.7Ba0.3Nb2O6−δ (0.20 at 1073 K).
期刊介绍:
The Journal of Applied Physics (JAP) is an influential international journal publishing significant new experimental and theoretical results of applied physics research.
Topics covered in JAP are diverse and reflect the most current applied physics research, including:
Dielectrics, ferroelectrics, and multiferroics-
Electrical discharges, plasmas, and plasma-surface interactions-
Emerging, interdisciplinary, and other fields of applied physics-
Magnetism, spintronics, and superconductivity-
Organic-Inorganic systems, including organic electronics-
Photonics, plasmonics, photovoltaics, lasers, optical materials, and phenomena-
Physics of devices and sensors-
Physics of materials, including electrical, thermal, mechanical and other properties-
Physics of matter under extreme conditions-
Physics of nanoscale and low-dimensional systems, including atomic and quantum phenomena-
Physics of semiconductors-
Soft matter, fluids, and biophysics-
Thin films, interfaces, and surfaces