Simay Aydonat, Adrian H. Hergesell, Claire L. Seitzinger, Regina Lennarz, George Chang, Carsten Sievers, Jan Meisner, Ina Vollmer, Robert Göstl
{"title":"Leveraging mechanochemistry for sustainable polymer degradation","authors":"Simay Aydonat, Adrian H. Hergesell, Claire L. Seitzinger, Regina Lennarz, George Chang, Carsten Sievers, Jan Meisner, Ina Vollmer, Robert Göstl","doi":"10.1038/s41428-023-00863-9","DOIUrl":null,"url":null,"abstract":"Over 8 billion tons of plastic have been produced to date, and a 100% reclamation recycling strategy is not foreseeable. This review summarizes how the mechanochemistry of polymers may contribute to a sustainable polymer future by controlling the degradation not only of de novo developed designer polymers but also of plastics in existing waste streams. The historical development of polymer mechanochemistry is presented while highlighting current examples of mechanochemically induced polymer degradation. Additionally, theoretical and computational frameworks are discussed that may lead to the discovery and better understanding of new mechanochemical reactions in the future. This review takes into account technical and engineering perspectives converging the fields of trituration and polymer mechanochemistry with a particular focus on the fate of commodity polymers and potential technologies to monitor mechanochemical reactions while they occur. Therefore, a unique perspective of multiple communities is presented, highlighting the need for future transdisciplinary research to tackle the high-leverage parameters governing an eventually successful mechanochemical degradation approach for a circular economy. Mechanochemistry is a promising technology to tackle current and future polymer waste streams for a sustainable future. With this review, we take into account synthetic, computational, technical, and engineering perspectives to converge trituration and polymer mechanochemistry with a particular focus on the fate of commodity polymers and potential technologies to monitor mechanochemical reactions while they occur. We highlight the need for future transdisciplinary research to tackle the high-leverage parameters governing an eventually successful mechanochemical polymer degradation approach for a circular economy.","PeriodicalId":20302,"journal":{"name":"Polymer Journal","volume":"56 4","pages":"249-268"},"PeriodicalIF":2.3000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41428-023-00863-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41428-023-00863-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Over 8 billion tons of plastic have been produced to date, and a 100% reclamation recycling strategy is not foreseeable. This review summarizes how the mechanochemistry of polymers may contribute to a sustainable polymer future by controlling the degradation not only of de novo developed designer polymers but also of plastics in existing waste streams. The historical development of polymer mechanochemistry is presented while highlighting current examples of mechanochemically induced polymer degradation. Additionally, theoretical and computational frameworks are discussed that may lead to the discovery and better understanding of new mechanochemical reactions in the future. This review takes into account technical and engineering perspectives converging the fields of trituration and polymer mechanochemistry with a particular focus on the fate of commodity polymers and potential technologies to monitor mechanochemical reactions while they occur. Therefore, a unique perspective of multiple communities is presented, highlighting the need for future transdisciplinary research to tackle the high-leverage parameters governing an eventually successful mechanochemical degradation approach for a circular economy. Mechanochemistry is a promising technology to tackle current and future polymer waste streams for a sustainable future. With this review, we take into account synthetic, computational, technical, and engineering perspectives to converge trituration and polymer mechanochemistry with a particular focus on the fate of commodity polymers and potential technologies to monitor mechanochemical reactions while they occur. We highlight the need for future transdisciplinary research to tackle the high-leverage parameters governing an eventually successful mechanochemical polymer degradation approach for a circular economy.
期刊介绍:
Polymer Journal promotes research from all aspects of polymer science from anywhere in the world and aims to provide an integrated platform for scientific communication that assists the advancement of polymer science and related fields. The journal publishes Original Articles, Notes, Short Communications and Reviews.
Subject areas and topics of particular interest within the journal''s scope include, but are not limited to, those listed below:
Polymer synthesis and reactions
Polymer structures
Physical properties of polymers
Polymer surface and interfaces
Functional polymers
Supramolecular polymers
Self-assembled materials
Biopolymers and bio-related polymer materials
Polymer engineering.