Efficient processed carbon Soot@MoS2 hybrid Bi-functional electrode for dye-sensitized solar cell and asymmetric supercapacitor devices

IF 9.9 2区 材料科学 Q1 Engineering Nano Materials Science Pub Date : 2024-08-01 DOI:10.1016/j.nanoms.2024.01.001
{"title":"Efficient processed carbon Soot@MoS2 hybrid Bi-functional electrode for dye-sensitized solar cell and asymmetric supercapacitor devices","authors":"","doi":"10.1016/j.nanoms.2024.01.001","DOIUrl":null,"url":null,"abstract":"<div><p>A feasible approach to rectify the world's energy demand using sustainable development of adequate energy generation and storage technologies in a single channel. In this respect, we made a holistic approach with a bi-functional electrode material to perform effectively in energy generation and storage applications. MoS<sub>2</sub> nanosheets were produced by the eco-friendly method and reduced graphene oxide is used to prepared by carbon soot which is derived from castor oil. The prepared soot and rGO were combined with MoS<sub>2</sub> nanosheets using a simple sonication method. The as-prepared sample was introduced in the supercapacitor and DSSC application. The combination MoS<sub>2</sub>@rGO provides an enhanced conversion efficiency of 11.81 ​% and the reproducibility of DSSC is also studied. Further, MoS<sub>2</sub>@rGO is used to fabricate an asymmetric supercapacitor to investigate its real-time application. The device produced the maximum power density (1666.6 ​mW/kg) and energy density (25.69 ​mWh/Kg) at 1 A/g. The asymmetric supercapacitor device holds a cyclic stability of 81.4 % for 5000 cycles and it powered up an LED device for 4 ​min.</p></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":null,"pages":null},"PeriodicalIF":9.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589965124000011/pdfft?md5=5c93e0970c6281a7138d3bb123c37cdb&pid=1-s2.0-S2589965124000011-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589965124000011","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

A feasible approach to rectify the world's energy demand using sustainable development of adequate energy generation and storage technologies in a single channel. In this respect, we made a holistic approach with a bi-functional electrode material to perform effectively in energy generation and storage applications. MoS2 nanosheets were produced by the eco-friendly method and reduced graphene oxide is used to prepared by carbon soot which is derived from castor oil. The prepared soot and rGO were combined with MoS2 nanosheets using a simple sonication method. The as-prepared sample was introduced in the supercapacitor and DSSC application. The combination MoS2@rGO provides an enhanced conversion efficiency of 11.81 ​% and the reproducibility of DSSC is also studied. Further, MoS2@rGO is used to fabricate an asymmetric supercapacitor to investigate its real-time application. The device produced the maximum power density (1666.6 ​mW/kg) and energy density (25.69 ​mWh/Kg) at 1 A/g. The asymmetric supercapacitor device holds a cyclic stability of 81.4 % for 5000 cycles and it powered up an LED device for 4 ​min.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于染料敏化太阳能电池和不对称超级电容器设备的高效加工碳烟@MoS2 混合双功能电极
利用可持续发展的发电和储能技术,以单一渠道满足世界能源需求的可行方法。在这方面,我们采用了一种具有双功能电极材料的整体方法,使其在发电和储能应用中发挥有效作用。MoS2 纳米片是用环保方法生产的,还原氧化石墨烯则是用从蓖麻油中提取的碳烟制备的。使用简单的超声方法将制备好的碳烟和还原氧化石墨烯与 MoS2 纳米片结合在一起。制备的样品被引入超级电容器和 DSSC 应用中。MoS2@rGO 组合的转换效率提高了 11.81%,同时还研究了 DSSC 的可重复性。此外,MoS2@rGO 还用于制造不对称超级电容器,以研究其实时应用。该装置在 1 A/g 时产生了最大功率密度(1666.6 mW/kg)和能量密度(25.69 mWh/Kg)。非对称超级电容器装置在 5000 次循环中保持了 81.4% 的循环稳定性,并为 LED 装置供电 4 分钟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Materials Science
Nano Materials Science Engineering-Mechanics of Materials
CiteScore
20.90
自引率
3.00%
发文量
294
审稿时长
9 weeks
期刊介绍: Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.
期刊最新文献
Defect-induced synthesis of nanoscale hierarchically porous metal-organic frameworks with tunable porosity for enhanced volatile organic compound adsorption Design of highly active and durable oxygen evolution catalyst with intrinsic chlorine inhibition property for seawater electrolysis Covalent organic frameworks/carbon nanotubes composite with cobalt(II) pyrimidine sites for bifunctional oxygen electrocatalysis A nano-sheet graphene-based enhanced thermal radiation composite for passive heat dissipation from vehicle batteries Gradient honeycomb metastructure with broadband microwave absorption and effective mechanical resistance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1