{"title":"Tracking treatment effect heterogeneity in evolving environments","authors":"Tian Qin, Long-Fei Li, Tian-Zuo Wang, Zhi-Hua Zhou","doi":"10.1007/s10994-023-06421-x","DOIUrl":null,"url":null,"abstract":"<p>Heterogeneous treatment effect (HTE) estimation plays a crucial role in developing personalized treatment plans across various applications. Conventional approaches assume that the observed data are independent and identically distributed (i.i.d.). In some real applications, however, the assumption does not hold: the environment may evolve, which leads to variations in HTE over time. To enable HTE estimation in evolving environments, we introduce and formulate the online HTE estimation problem. We propose an online ensemble-based HTE estimation method called ETHOS, which is capable of adapting to unknown evolving environments by ensembling the outputs of multiple base estimators that track environmental changes at different scales. Theoretical analysis reveals that ETHOS achieves an optimal expected dynamic regret <span>\\(O(\\sqrt{T(1+P_T)})\\)</span>, where <i>T</i> denotes the number of observed examples and <span>\\(P_T\\)</span> characterizes the intensity of environment changes. The achieved dynamic regret ensures that our method consistently approaches the optimal online estimators as long as the evolution of the environment is moderate. We conducted extensive experiments on three common benchmark datasets with various environment evolving mechanisms. The results validate the theoretical analysis and the effectiveness of our proposed method.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"211 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10994-023-06421-x","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Heterogeneous treatment effect (HTE) estimation plays a crucial role in developing personalized treatment plans across various applications. Conventional approaches assume that the observed data are independent and identically distributed (i.i.d.). In some real applications, however, the assumption does not hold: the environment may evolve, which leads to variations in HTE over time. To enable HTE estimation in evolving environments, we introduce and formulate the online HTE estimation problem. We propose an online ensemble-based HTE estimation method called ETHOS, which is capable of adapting to unknown evolving environments by ensembling the outputs of multiple base estimators that track environmental changes at different scales. Theoretical analysis reveals that ETHOS achieves an optimal expected dynamic regret \(O(\sqrt{T(1+P_T)})\), where T denotes the number of observed examples and \(P_T\) characterizes the intensity of environment changes. The achieved dynamic regret ensures that our method consistently approaches the optimal online estimators as long as the evolution of the environment is moderate. We conducted extensive experiments on three common benchmark datasets with various environment evolving mechanisms. The results validate the theoretical analysis and the effectiveness of our proposed method.
期刊介绍:
Machine Learning serves as a global platform dedicated to computational approaches in learning. The journal reports substantial findings on diverse learning methods applied to various problems, offering support through empirical studies, theoretical analysis, or connections to psychological phenomena. It demonstrates the application of learning methods to solve significant problems and aims to enhance the conduct of machine learning research with a focus on verifiable and replicable evidence in published papers.