Natural Language Processing Algorithm Used for Staging Pulmonary Oncology from Free-Text Radiological Reports: “Including PET-CT and Validation Towards Clinical Use”
J. Martijn Nobel, Sander Puts, Jasenko Krdzalic, Karen M. L. Zegers, Marc B. I. Lobbes, Simon G. F. Robben, André L. A. J. Dekker
{"title":"Natural Language Processing Algorithm Used for Staging Pulmonary Oncology from Free-Text Radiological Reports: “Including PET-CT and Validation Towards Clinical Use”","authors":"J. Martijn Nobel, Sander Puts, Jasenko Krdzalic, Karen M. L. Zegers, Marc B. I. Lobbes, Simon G. F. Robben, André L. A. J. Dekker","doi":"10.1007/s10278-023-00913-x","DOIUrl":null,"url":null,"abstract":"<p>Natural language processing (NLP) can be used to process and structure free text, such as (free text) radiological reports. In radiology, it is important that reports are complete and accurate for clinical staging of, for instance, pulmonary oncology. A computed tomography (CT) or positron emission tomography (PET)-CT scan is of great importance in tumor staging, and NLP may be of additional value to the radiological report when used in the staging process as it may be able to extract the T and N stage of the 8th tumor–node–metastasis (TNM) classification system. The purpose of this study is to evaluate a new TN algorithm (TN-PET-CT) by adding a layer of metabolic activity to an already existing rule-based NLP algorithm (TN-CT). This new TN-PET-CT algorithm is capable of staging chest CT examinations as well as PET-CT scans. The study design made it possible to perform a subgroup analysis to test the external validation of the prior TN-CT algorithm. For information extraction and matching, pyContextNLP, SpaCy, and regular expressions were used. Overall TN accuracy score of the TN-PET-CT algorithm was 0.73 and 0.62 in the training and validation set (<i>N</i> = 63, <i>N</i> = 100). The external validation of the TN-CT classifier (<i>N</i> = 65) was 0.72. Overall, it is possible to adjust the TN-CT algorithm into a TN-PET-CT algorithm. However, outcomes highly depend on the accuracy of the report, the used vocabulary, and its context to express, for example, uncertainty. This is true for both the adjusted PET-CT algorithm and for the CT algorithm when applied in another hospital.</p>","PeriodicalId":50214,"journal":{"name":"Journal of Digital Imaging","volume":"51 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Digital Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10278-023-00913-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Natural language processing (NLP) can be used to process and structure free text, such as (free text) radiological reports. In radiology, it is important that reports are complete and accurate for clinical staging of, for instance, pulmonary oncology. A computed tomography (CT) or positron emission tomography (PET)-CT scan is of great importance in tumor staging, and NLP may be of additional value to the radiological report when used in the staging process as it may be able to extract the T and N stage of the 8th tumor–node–metastasis (TNM) classification system. The purpose of this study is to evaluate a new TN algorithm (TN-PET-CT) by adding a layer of metabolic activity to an already existing rule-based NLP algorithm (TN-CT). This new TN-PET-CT algorithm is capable of staging chest CT examinations as well as PET-CT scans. The study design made it possible to perform a subgroup analysis to test the external validation of the prior TN-CT algorithm. For information extraction and matching, pyContextNLP, SpaCy, and regular expressions were used. Overall TN accuracy score of the TN-PET-CT algorithm was 0.73 and 0.62 in the training and validation set (N = 63, N = 100). The external validation of the TN-CT classifier (N = 65) was 0.72. Overall, it is possible to adjust the TN-CT algorithm into a TN-PET-CT algorithm. However, outcomes highly depend on the accuracy of the report, the used vocabulary, and its context to express, for example, uncertainty. This is true for both the adjusted PET-CT algorithm and for the CT algorithm when applied in another hospital.
期刊介绍:
The Journal of Digital Imaging (JDI) is the official peer-reviewed journal of the Society for Imaging Informatics in Medicine (SIIM). JDI’s goal is to enhance the exchange of knowledge encompassed by the general topic of Imaging Informatics in Medicine such as research and practice in clinical, engineering, and information technologies and techniques in all medical imaging environments. JDI topics are of interest to researchers, developers, educators, physicians, and imaging informatics professionals.
Suggested Topics
PACS and component systems; imaging informatics for the enterprise; image-enabled electronic medical records; RIS and HIS; digital image acquisition; image processing; image data compression; 3D, visualization, and multimedia; speech recognition; computer-aided diagnosis; facilities design; imaging vocabularies and ontologies; Transforming the Radiological Interpretation Process (TRIP™); DICOM and other standards; workflow and process modeling and simulation; quality assurance; archive integrity and security; teleradiology; digital mammography; and radiological informatics education.