Yifeng Yang, Ying Hu, Yang Chen, Weidong Gu, Shengdong Nie
{"title":"Identifying Leukoaraiosis with Mild Cognitive Impairment by Fusing Multiple MRI Morphological Metrics and Ensemble Machine Learning","authors":"Yifeng Yang, Ying Hu, Yang Chen, Weidong Gu, Shengdong Nie","doi":"10.1007/s10278-023-00958-y","DOIUrl":null,"url":null,"abstract":"<p>Leukoaraiosis (LA) is strongly associated with impaired cognition and increased dementia risk. Determining effective and robust methods of identifying LA patients with mild cognitive impairment (LA-MCI) is important for clinical intervention and disease monitoring. In this study, an ensemble learning method that combines multiple magnetic resonance imaging (MRI) morphological features is proposed to distinguish LA-MCI patients from LA patients lacking cognitive impairment (LA-nCI). Multiple comprehensive morphological measures (including gray matter volume (GMV), cortical thickness (CT), surface area (SA), cortical volume (CV), sulcus depth (SD), fractal dimension (FD), and gyrification index (GI)) are extracted from MRI to enrich model training on disease characterization information. Then, based on the general extreme gradient boosting (XGBoost) classifier, we leverage a weighted soft-voting ensemble framework to ensemble a data-level resampling method (Fusion + XGBoost) and an algorithm-level focal loss (FL)-improved XGBoost model (FL-XGBoost) to overcome class-imbalance learning problems and provide superior classification performance and stability. The baseline XGBoost model trained on an original imbalanced dataset had a balanced accuracy (Bacc) of 78.20%. The separate Fusion + XGBoost and FL-XGBoost models achieved Bacc scores of 80.53 and 81.25%, respectively, which are clear improvements (i.e., 2.33% and 3.05%, respectively). The fused model distinguishes LA-MCI from LA-nCI with an overall accuracy of 84.82%. Sensitivity and specificity were also well improved (85.50 and 84.14%, respectively). This improved model has the potential to facilitate the clinical diagnosis of LA-MCI.</p>","PeriodicalId":50214,"journal":{"name":"Journal of Digital Imaging","volume":"72 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Digital Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10278-023-00958-y","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Leukoaraiosis (LA) is strongly associated with impaired cognition and increased dementia risk. Determining effective and robust methods of identifying LA patients with mild cognitive impairment (LA-MCI) is important for clinical intervention and disease monitoring. In this study, an ensemble learning method that combines multiple magnetic resonance imaging (MRI) morphological features is proposed to distinguish LA-MCI patients from LA patients lacking cognitive impairment (LA-nCI). Multiple comprehensive morphological measures (including gray matter volume (GMV), cortical thickness (CT), surface area (SA), cortical volume (CV), sulcus depth (SD), fractal dimension (FD), and gyrification index (GI)) are extracted from MRI to enrich model training on disease characterization information. Then, based on the general extreme gradient boosting (XGBoost) classifier, we leverage a weighted soft-voting ensemble framework to ensemble a data-level resampling method (Fusion + XGBoost) and an algorithm-level focal loss (FL)-improved XGBoost model (FL-XGBoost) to overcome class-imbalance learning problems and provide superior classification performance and stability. The baseline XGBoost model trained on an original imbalanced dataset had a balanced accuracy (Bacc) of 78.20%. The separate Fusion + XGBoost and FL-XGBoost models achieved Bacc scores of 80.53 and 81.25%, respectively, which are clear improvements (i.e., 2.33% and 3.05%, respectively). The fused model distinguishes LA-MCI from LA-nCI with an overall accuracy of 84.82%. Sensitivity and specificity were also well improved (85.50 and 84.14%, respectively). This improved model has the potential to facilitate the clinical diagnosis of LA-MCI.
期刊介绍:
The Journal of Digital Imaging (JDI) is the official peer-reviewed journal of the Society for Imaging Informatics in Medicine (SIIM). JDI’s goal is to enhance the exchange of knowledge encompassed by the general topic of Imaging Informatics in Medicine such as research and practice in clinical, engineering, and information technologies and techniques in all medical imaging environments. JDI topics are of interest to researchers, developers, educators, physicians, and imaging informatics professionals.
Suggested Topics
PACS and component systems; imaging informatics for the enterprise; image-enabled electronic medical records; RIS and HIS; digital image acquisition; image processing; image data compression; 3D, visualization, and multimedia; speech recognition; computer-aided diagnosis; facilities design; imaging vocabularies and ontologies; Transforming the Radiological Interpretation Process (TRIP™); DICOM and other standards; workflow and process modeling and simulation; quality assurance; archive integrity and security; teleradiology; digital mammography; and radiological informatics education.