Identifying Leukoaraiosis with Mild Cognitive Impairment by Fusing Multiple MRI Morphological Metrics and Ensemble Machine Learning

IF 2.9 2区 工程技术 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Journal of Digital Imaging Pub Date : 2024-01-12 DOI:10.1007/s10278-023-00958-y
Yifeng Yang, Ying Hu, Yang Chen, Weidong Gu, Shengdong Nie
{"title":"Identifying Leukoaraiosis with Mild Cognitive Impairment by Fusing Multiple MRI Morphological Metrics and Ensemble Machine Learning","authors":"Yifeng Yang, Ying Hu, Yang Chen, Weidong Gu, Shengdong Nie","doi":"10.1007/s10278-023-00958-y","DOIUrl":null,"url":null,"abstract":"<p>Leukoaraiosis (LA) is strongly associated with impaired cognition and increased dementia risk. Determining effective and robust methods of identifying LA patients with mild cognitive impairment (LA-MCI) is important for clinical intervention and disease monitoring. In this study, an ensemble learning method that combines multiple magnetic resonance imaging (MRI) morphological features is proposed to distinguish LA-MCI patients from LA patients lacking cognitive impairment (LA-nCI). Multiple comprehensive morphological measures (including gray matter volume (GMV), cortical thickness (CT), surface area (SA), cortical volume (CV), sulcus depth (SD), fractal dimension (FD), and gyrification index (GI)) are extracted from MRI to enrich model training on disease characterization information. Then, based on the general extreme gradient boosting (XGBoost) classifier, we leverage a weighted soft-voting ensemble framework to ensemble a data-level resampling method (Fusion + XGBoost) and an algorithm-level focal loss (FL)-improved XGBoost model (FL-XGBoost) to overcome class-imbalance learning problems and provide superior classification performance and stability. The baseline XGBoost model trained on an original imbalanced dataset had a balanced accuracy (Bacc) of 78.20%. The separate Fusion + XGBoost and FL-XGBoost models achieved Bacc scores of 80.53 and 81.25%, respectively, which are clear improvements (i.e., 2.33% and 3.05%, respectively). The fused model distinguishes LA-MCI from LA-nCI with an overall accuracy of 84.82%. Sensitivity and specificity were also well improved (85.50 and 84.14%, respectively). This improved model has the potential to facilitate the clinical diagnosis of LA-MCI.</p>","PeriodicalId":50214,"journal":{"name":"Journal of Digital Imaging","volume":"72 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Digital Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10278-023-00958-y","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Leukoaraiosis (LA) is strongly associated with impaired cognition and increased dementia risk. Determining effective and robust methods of identifying LA patients with mild cognitive impairment (LA-MCI) is important for clinical intervention and disease monitoring. In this study, an ensemble learning method that combines multiple magnetic resonance imaging (MRI) morphological features is proposed to distinguish LA-MCI patients from LA patients lacking cognitive impairment (LA-nCI). Multiple comprehensive morphological measures (including gray matter volume (GMV), cortical thickness (CT), surface area (SA), cortical volume (CV), sulcus depth (SD), fractal dimension (FD), and gyrification index (GI)) are extracted from MRI to enrich model training on disease characterization information. Then, based on the general extreme gradient boosting (XGBoost) classifier, we leverage a weighted soft-voting ensemble framework to ensemble a data-level resampling method (Fusion + XGBoost) and an algorithm-level focal loss (FL)-improved XGBoost model (FL-XGBoost) to overcome class-imbalance learning problems and provide superior classification performance and stability. The baseline XGBoost model trained on an original imbalanced dataset had a balanced accuracy (Bacc) of 78.20%. The separate Fusion + XGBoost and FL-XGBoost models achieved Bacc scores of 80.53 and 81.25%, respectively, which are clear improvements (i.e., 2.33% and 3.05%, respectively). The fused model distinguishes LA-MCI from LA-nCI with an overall accuracy of 84.82%. Sensitivity and specificity were also well improved (85.50 and 84.14%, respectively). This improved model has the potential to facilitate the clinical diagnosis of LA-MCI.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过融合多种核磁共振成像形态学指标和集合机器学习,识别伴有轻度认知障碍的白细胞增多症
白血病(LA)与认知功能受损和痴呆风险增加密切相关。确定识别轻度认知障碍(LA-MCI)LA 患者的有效而稳健的方法对于临床干预和疾病监测非常重要。本研究提出了一种结合多种磁共振成像(MRI)形态学特征的集合学习方法,用于区分轻度认知障碍(LA-MCI)患者和缺乏认知障碍(LA-nCI)的LA患者。从核磁共振成像中提取多种综合形态测量指标(包括灰质体积(GMV)、皮质厚度(CT)、表面积(SA)、皮质体积(CV)、沟深度(SD)、分形维度(FD)和回旋指数(GI)),以丰富疾病特征信息的模型训练。然后,在通用极梯度提升(XGBoost)分类器的基础上,我们利用加权软投票集合框架,将数据级重采样方法(Fusion + XGBoost)和算法级焦点损失(FL)改进的 XGBoost 模型(FL-XGBoost)进行集合,以克服类不平衡学习问题,并提供卓越的分类性能和稳定性。在原始不平衡数据集上训练的基线 XGBoost 模型的平衡准确率(Bacc)为 78.20%。单独的融合 + XGBoost 模型和 FL-XGBoost 模型的 Bacc 分数分别为 80.53% 和 81.25%,有了明显的提高(即分别提高了 2.33% 和 3.05%)。融合模型区分 LA-MCI 和 LA-nCI 的总体准确率为 84.82%。灵敏度和特异性也得到了很好的改善(分别为 85.50% 和 84.14%)。该改进模型有望促进LA-MCI的临床诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Digital Imaging
Journal of Digital Imaging 医学-核医学
CiteScore
7.50
自引率
6.80%
发文量
192
审稿时长
6-12 weeks
期刊介绍: The Journal of Digital Imaging (JDI) is the official peer-reviewed journal of the Society for Imaging Informatics in Medicine (SIIM). JDI’s goal is to enhance the exchange of knowledge encompassed by the general topic of Imaging Informatics in Medicine such as research and practice in clinical, engineering, and information technologies and techniques in all medical imaging environments. JDI topics are of interest to researchers, developers, educators, physicians, and imaging informatics professionals. Suggested Topics PACS and component systems; imaging informatics for the enterprise; image-enabled electronic medical records; RIS and HIS; digital image acquisition; image processing; image data compression; 3D, visualization, and multimedia; speech recognition; computer-aided diagnosis; facilities design; imaging vocabularies and ontologies; Transforming the Radiological Interpretation Process (TRIP™); DICOM and other standards; workflow and process modeling and simulation; quality assurance; archive integrity and security; teleradiology; digital mammography; and radiological informatics education.
期刊最新文献
Intra-Individual Reproducibility of Automated Abdominal Organ Segmentation—Performance of TotalSegmentator Compared to Human Readers and an Independent nnU-Net Model Teleradiology-Based Referrals for Patients with Gastroenterological Diseases Between Tertiary and Regional Hospitals: A Hospital-to-Hospital Approach Vital Characteristics Cellular Neural Network (VCeNN) for Melanoma Lesion Segmentation: A Biologically Inspired Deep Learning Approach Septic Arthritis Modeling Using Sonographic Fusion with Attention and Selective Transformation: a Preliminary Study Assessment of Age-Related Differences in Lower Leg Muscles Quality Using Radiomic Features of Magnetic Resonance Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1