{"title":"Indirect solution modeling of melting behavior of SiO2 based on the image processing technology","authors":"Cunhao Lu, Yi Zhang, Jiayi Zhang, Weixiang Sun, Anying Xia, Mingli Zhang, Jian Chen","doi":"10.1002/apj.3028","DOIUrl":null,"url":null,"abstract":"<p>The utilization of tempered blast-furnace slag through the direct fiber forming process to produce high-value thermal insulation materials offers a dual benefit: it efficiently utilizes the latent heat in the unused slag and significantly increases the value of blast-furnace slag utilization. However, measuring the melting properties of iron slag at high temperatures is challenging. In this study, the melting behavior of SiO<sub>2</sub> in a high-temperature molten pool was investigated. We employ dynamic visual data (video stream) captured via a non-contact charge coupled device video recording system to extract SiO<sub>2</sub> contours through image processing. The change in image centroid characteristics is used to establish a convolution function relationship, and MATLAB's traversal search algorithm determines the centroid position of SiO<sub>2</sub>. Given that SiO<sub>2</sub> is proportionate to crucible pixels, the area of the SiO<sub>2</sub> is calculated through pixel statistics within these contours. A new indirect method is then proposed to process image information to obtain SiO<sub>2</sub> volume and mass at different time points. An exponential fitting yields the melting rate function of SiO<sub>2</sub>. Finally, this indirect method has been compared with shape from shading, quantitative characterization, and dimensional analysis techniques. Besides, the strengths and limitations of each method have been discussed. Our findings reveal that the indirect solution method presented here boasts straightforward calculation steps and imposes minimal image format requirements, which provides theoretical and technical support for the direct fiber forming process of blast-furnace slag.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apj.3028","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The utilization of tempered blast-furnace slag through the direct fiber forming process to produce high-value thermal insulation materials offers a dual benefit: it efficiently utilizes the latent heat in the unused slag and significantly increases the value of blast-furnace slag utilization. However, measuring the melting properties of iron slag at high temperatures is challenging. In this study, the melting behavior of SiO2 in a high-temperature molten pool was investigated. We employ dynamic visual data (video stream) captured via a non-contact charge coupled device video recording system to extract SiO2 contours through image processing. The change in image centroid characteristics is used to establish a convolution function relationship, and MATLAB's traversal search algorithm determines the centroid position of SiO2. Given that SiO2 is proportionate to crucible pixels, the area of the SiO2 is calculated through pixel statistics within these contours. A new indirect method is then proposed to process image information to obtain SiO2 volume and mass at different time points. An exponential fitting yields the melting rate function of SiO2. Finally, this indirect method has been compared with shape from shading, quantitative characterization, and dimensional analysis techniques. Besides, the strengths and limitations of each method have been discussed. Our findings reveal that the indirect solution method presented here boasts straightforward calculation steps and imposes minimal image format requirements, which provides theoretical and technical support for the direct fiber forming process of blast-furnace slag.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.