Efficient N-to-M Checkpointing Algorithm for Finite Element Simulations

David A. Ham, Vaclav Hapla, Matthew G. Knepley, Lawrence Mitchell, Koki Sagiyama
{"title":"Efficient N-to-M Checkpointing Algorithm for Finite Element Simulations","authors":"David A. Ham, Vaclav Hapla, Matthew G. Knepley, Lawrence Mitchell, Koki Sagiyama","doi":"arxiv-2401.05868","DOIUrl":null,"url":null,"abstract":"In this work, we introduce a new algorithm for N-to-M checkpointing in finite\nelement simulations. This new algorithm allows efficient saving/loading of\nfunctions representing physical quantities associated with the mesh\nrepresenting the physical domain. Specifically, the algorithm allows for using\ndifferent numbers of parallel processes for saving and loading, allowing for\nrestarting and post-processing on the process count appropriate to the given\nphase of the simulation and other conditions. For demonstration, we implemented\nthis algorithm in PETSc, the Portable, Extensible Toolkit for Scientific\nComputation, and added a convenient high-level interface into Firedrake, a\nsystem for solving partial differential equations using finite element methods.\nWe evaluated our new implementation by saving and loading data involving 8.2\nbillion finite element degrees of freedom using 8,192 parallel processes on\nARCHER2, the UK National Supercomputing Service.","PeriodicalId":501256,"journal":{"name":"arXiv - CS - Mathematical Software","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Mathematical Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.05868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we introduce a new algorithm for N-to-M checkpointing in finite element simulations. This new algorithm allows efficient saving/loading of functions representing physical quantities associated with the mesh representing the physical domain. Specifically, the algorithm allows for using different numbers of parallel processes for saving and loading, allowing for restarting and post-processing on the process count appropriate to the given phase of the simulation and other conditions. For demonstration, we implemented this algorithm in PETSc, the Portable, Extensible Toolkit for Scientific Computation, and added a convenient high-level interface into Firedrake, a system for solving partial differential equations using finite element methods. We evaluated our new implementation by saving and loading data involving 8.2 billion finite element degrees of freedom using 8,192 parallel processes on ARCHER2, the UK National Supercomputing Service.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有限元模拟的高效 N 对 M 检查点算法
在这项工作中,我们为有限元模拟中的 N 对 M 检查点引入了一种新算法。这种新算法可以高效地保存/加载与物理域网格相关的物理量函数。具体来说,该算法允许使用不同数量的并行进程进行保存和加载,允许在与给定模拟阶段和其他条件相适应的进程数量上启动和后处理。为了进行演示,我们在 PETSc(用于科学计算的便携式可扩展工具包)中实现了这一算法,并在 Firedrake(使用有限元方法求解偏微分方程的系统)中添加了一个方便的高级接口。我们在英国国家超级计算服务机构ARCHER2 上使用 8192 个并行进程保存和加载了涉及 82 亿个有限元自由度的数据,对我们的新实现进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A prony method variant which surpasses the Adaptive LMS filter in the output signal's representation of input TorchDA: A Python package for performing data assimilation with deep learning forward and transformation functions HOBOTAN: Efficient Higher Order Binary Optimization Solver with Tensor Networks and PyTorch MPAT: Modular Petri Net Assembly Toolkit Enabling MPI communication within Numba/LLVM JIT-compiled Python code using numba-mpi v1.0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1