Treatment-related Neuroendocrine Prostate Carcinoma-Diagnostic and Molecular Correlates.

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2024-03-01 Epub Date: 2024-01-15 DOI:10.1097/PAP.0000000000000431
Anuradha Gopalan
{"title":"Treatment-related Neuroendocrine Prostate Carcinoma-Diagnostic and Molecular Correlates.","authors":"Anuradha Gopalan","doi":"10.1097/PAP.0000000000000431","DOIUrl":null,"url":null,"abstract":"<p><p>Treatment-related neuroendocrine prostate cancer is a distinctive category of prostate cancer that arises after intensive suppression of the androgen receptor by next-generation therapeutic inhibition of androgen receptor signaling. The biological processes that set in motion the series of events resulting in transformation of adenocarcinoma to neuroendocrine carcinoma include genomic (loss of tumor suppressors TP53 and RB1, amplification of oncogenes N-MYC and Aurora Kinase A, dysregulation of transcription factors SOX2, achaete-scute-homolog 1, and others) as well as epigenomic (DNA methylation, EZH2 overexpression, and others). Pathologic diagnosis is key to effective therapy for this disease, and this is aided by localizing metastatic lesions for biopsy using radioligand imaging in the appropriate clinical context. As our understanding of biology evolves, there has been increased morphologic recognition and characterization of tumor phenotypes that are present in this advanced post-treatment setting. New and promising biomarkers (delta-like ligand 3 and others) have been discovered, which opens up novel therapeutic avenues including immunotherapy and antibody-drug conjugates for this lethal disease with currently limited treatment options.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/PAP.0000000000000431","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Treatment-related neuroendocrine prostate cancer is a distinctive category of prostate cancer that arises after intensive suppression of the androgen receptor by next-generation therapeutic inhibition of androgen receptor signaling. The biological processes that set in motion the series of events resulting in transformation of adenocarcinoma to neuroendocrine carcinoma include genomic (loss of tumor suppressors TP53 and RB1, amplification of oncogenes N-MYC and Aurora Kinase A, dysregulation of transcription factors SOX2, achaete-scute-homolog 1, and others) as well as epigenomic (DNA methylation, EZH2 overexpression, and others). Pathologic diagnosis is key to effective therapy for this disease, and this is aided by localizing metastatic lesions for biopsy using radioligand imaging in the appropriate clinical context. As our understanding of biology evolves, there has been increased morphologic recognition and characterization of tumor phenotypes that are present in this advanced post-treatment setting. New and promising biomarkers (delta-like ligand 3 and others) have been discovered, which opens up novel therapeutic avenues including immunotherapy and antibody-drug conjugates for this lethal disease with currently limited treatment options.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
与治疗相关的神经内分泌性前列腺癌-诊断和分子相关性。
与治疗相关的神经内分泌性前列腺癌是前列腺癌的一个独特类别,它是在通过下一代治疗抑制雄激素受体信号传导,从而强化抑制雄激素受体后产生的。导致腺癌向神经内分泌癌转化的一系列生物过程包括基因组(肿瘤抑制因子 TP53 和 RB1 缺失、致癌基因 N-MYC 和极光激酶 A 扩增、转录因子 SOX2、achaete-scute-homolog 1 等失调)和表观基因组(DNA 甲基化、EZH2 过表达等)。病理诊断是有效治疗这种疾病的关键,而在适当的临床情况下使用放射性同位素成像对转移病灶进行定位活检则有助于诊断。随着我们对生物学认识的不断深入,对治疗后晚期肿瘤表型的形态学识别和特征描述也在不断增加。新的、有前景的生物标记物(δ样配体 3 及其他)已被发现,这开辟了新的治疗途径,包括免疫疗法和抗体药物共轭物,用于治疗这种目前治疗选择有限的致命疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Decreased levels of phosphorylated synuclein in plasma are correlated with poststroke cognitive impairment. Small molecule inhibitor DDQ-treated hippocampal neuronal cells show improved neurite outgrowth and synaptic branching. Polyethylene glycol fusion repair of severed sciatic nerves accelerates recovery of nociceptive sensory perceptions in male and female rats of different strains. Reduced mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor contributes to neurodegeneration in a model of spinal and bulbar muscular atrophy pathology. Enhanced autophagic clearance of amyloid-β via histone deacetylase 6-mediated V-ATPase assembly and lysosomal acidification protects against Alzheimer's disease in vitro and in vivo.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1