Jesse P DeLuca, Daniel J Selig, Pooja Vir, Chau V Vuong, Jeffrey Della-Volpe, Ian M Rivera, Caroline Park, Benjamin Levi, Kathleen P Pratt, Ian J Stewart
{"title":"Seraph 100 Microbind Affinity Blood Filter Does Not Clear Antibiotics: An Analysis of Antibiotic Concentration Data from PURIFY-OBS.","authors":"Jesse P DeLuca, Daniel J Selig, Pooja Vir, Chau V Vuong, Jeffrey Della-Volpe, Ian M Rivera, Caroline Park, Benjamin Levi, Kathleen P Pratt, Ian J Stewart","doi":"10.1159/000531951","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Novel hemoperfusion systems are emerging for the treatment of sepsis. These devices can directly remove pathogens, pathogen-associated molecular patterns, cytokines, and other inflammatory markers from circulation. However, significant safety concerns such as potential antibiotic clearance need to be addressed prior to these devices being used in large clinical studies.</p><p><strong>Methods: </strong>Prospective, observational study of 34 participants undergoing treatment with the Seraph 100® Microbind Affinity Blood Filter (Seraph 100) device at 6 participating sites in the USA. Patients were included for analysis if they had a record of receiving an antibiotic concurrent with Seraph 100 treatment. Patients were excluded if there was missing information for blood flow rate. Blood samples were drawn pre- and post-filter at 1 h and 4 h after treatment initiation. These average pre- and post-filter time-concentration observations were then used to estimate antibiotic clearance in L/h (CLSeraph) due to the Seraph 100 device.</p><p><strong>Results: </strong>Of the 34 participants in the study, 17 met inclusion and exclusion criteria for the antibiotic analysis. Data were obtained for 7 antibiotics (azithromycin, cefazolin, cefepime, ceftriaxone, linezolid, piperacillin, and vancomycin) and one beta-lactamase inhibitor. Mean CLSeraph for the antibiotics investigated ranged from -0.57 to 0.47 L/h. No antibiotic had a CLSeraph statistically significant from 0.</p><p><strong>Discussion/conclusion: </strong>The Seraph 100 did not significantly clear any measured antibiotic in clinical samples. These data give further evidence to suggest that these therapies may be safely administered to critically ill patients and will not impact concentrations of administered antibiotics.</p>","PeriodicalId":8953,"journal":{"name":"Blood Purification","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood Purification","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000531951","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Novel hemoperfusion systems are emerging for the treatment of sepsis. These devices can directly remove pathogens, pathogen-associated molecular patterns, cytokines, and other inflammatory markers from circulation. However, significant safety concerns such as potential antibiotic clearance need to be addressed prior to these devices being used in large clinical studies.
Methods: Prospective, observational study of 34 participants undergoing treatment with the Seraph 100® Microbind Affinity Blood Filter (Seraph 100) device at 6 participating sites in the USA. Patients were included for analysis if they had a record of receiving an antibiotic concurrent with Seraph 100 treatment. Patients were excluded if there was missing information for blood flow rate. Blood samples were drawn pre- and post-filter at 1 h and 4 h after treatment initiation. These average pre- and post-filter time-concentration observations were then used to estimate antibiotic clearance in L/h (CLSeraph) due to the Seraph 100 device.
Results: Of the 34 participants in the study, 17 met inclusion and exclusion criteria for the antibiotic analysis. Data were obtained for 7 antibiotics (azithromycin, cefazolin, cefepime, ceftriaxone, linezolid, piperacillin, and vancomycin) and one beta-lactamase inhibitor. Mean CLSeraph for the antibiotics investigated ranged from -0.57 to 0.47 L/h. No antibiotic had a CLSeraph statistically significant from 0.
Discussion/conclusion: The Seraph 100 did not significantly clear any measured antibiotic in clinical samples. These data give further evidence to suggest that these therapies may be safely administered to critically ill patients and will not impact concentrations of administered antibiotics.
期刊介绍:
Practical information on hemodialysis, hemofiltration, peritoneal dialysis and apheresis is featured in this journal. Recognizing the critical importance of equipment and procedures, particular emphasis has been placed on reports, drawn from a wide range of fields, describing technical advances and improvements in methodology. Papers reflect the search for cost-effective solutions which increase not only patient survival but also patient comfort and disease improvement through prevention or correction of undesirable effects. Advances in vascular access and blood anticoagulation, problems associated with exposure of blood to foreign surfaces and acute-care nephrology, including continuous therapies, also receive attention. Nephrologists, internists, intensivists and hospital staff involved in dialysis, apheresis and immunoadsorption for acute and chronic solid organ failure will find this journal useful and informative. ''Blood Purification'' also serves as a platform for multidisciplinary experiences involving nephrologists, cardiologists and critical care physicians in order to expand the level of interaction between different disciplines and specialities.