Bone Substitute Options for Spine Fusion in Patients With Spine Trauma-Part I: Fusion Biology, Autografts, Allografts, Demineralized Bone Matrix, and Ceramics.
Byung-Jou Lee, Min Cheol Seok, Hae-Won Koo, Je Hoon Jeong, Myeong Jin Ko
{"title":"Bone Substitute Options for Spine Fusion in Patients With Spine Trauma-Part I: Fusion Biology, Autografts, Allografts, Demineralized Bone Matrix, and Ceramics.","authors":"Byung-Jou Lee, Min Cheol Seok, Hae-Won Koo, Je Hoon Jeong, Myeong Jin Ko","doi":"10.13004/kjnt.2023.19.e62","DOIUrl":null,"url":null,"abstract":"<p><p>Spinal trauma accounts for a large portion of injuries to the spine area, particularly as societies are entering an era of aging populations. Consequently, spine fractures accompanied by osteoporosis are becoming more prevalent. Achieving successful fusion surgery in patients with spine fractures associated with osteoporosis is even more challenging. Pseudarthrosis in the spine does not yield clinically favorable results; however, considerable effort has been made to achieve successful fusion, and the advancement of bone graft substitutes has been particularly crucial in this regard. Autograft bone is considered the best fusion material but is limited in use due to the quantity that can be harvested during surgery and associated complications. Accordingly, various bone graft substitutes are currently being used, although no specific guidelines are available and this mainly depends on the surgeon's choice. Therefore, the purpose of this review, across part I/II, is to summarize bone graft substitutes commonly used in spine surgery for spine fusion in patients with spine trauma and to update the latest knowledge on the role of recombinant human bone morphogenetic protein-2.</p>","PeriodicalId":36879,"journal":{"name":"Korean Journal of Neurotrauma","volume":"19 4","pages":"446-453"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10782097/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Neurotrauma","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13004/kjnt.2023.19.e62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Spinal trauma accounts for a large portion of injuries to the spine area, particularly as societies are entering an era of aging populations. Consequently, spine fractures accompanied by osteoporosis are becoming more prevalent. Achieving successful fusion surgery in patients with spine fractures associated with osteoporosis is even more challenging. Pseudarthrosis in the spine does not yield clinically favorable results; however, considerable effort has been made to achieve successful fusion, and the advancement of bone graft substitutes has been particularly crucial in this regard. Autograft bone is considered the best fusion material but is limited in use due to the quantity that can be harvested during surgery and associated complications. Accordingly, various bone graft substitutes are currently being used, although no specific guidelines are available and this mainly depends on the surgeon's choice. Therefore, the purpose of this review, across part I/II, is to summarize bone graft substitutes commonly used in spine surgery for spine fusion in patients with spine trauma and to update the latest knowledge on the role of recombinant human bone morphogenetic protein-2.