A Computable Phenotype for the Identification of Sexual and Gender Minorities in Electronic Health Records.

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2024-01-11 eCollection Date: 2023-01-01
Yongqiu Li, Xing He, Christopher Wheldon, Yonghui Wu, Mattia Prosperi, Elizabeth A Shenkman, Michael S Jaffee, Jingchuan Guo, Fei Wang, Yi Guo, Jiang Bian
{"title":"A Computable Phenotype for the Identification of Sexual and Gender Minorities in Electronic Health Records.","authors":"Yongqiu Li, Xing He, Christopher Wheldon, Yonghui Wu, Mattia Prosperi, Elizabeth A Shenkman, Michael S Jaffee, Jingchuan Guo, Fei Wang, Yi Guo, Jiang Bian","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Sexual gender minorities, including lesbian, gay, and bisexual (LGB) individuals face unique challenges due to discrimination, stigma, and marginalization, which negatively impact their well-being. Electronic health record (EHR) systems present an opportunity for LGB research, but accurately identifying LGB individuals in EHRs is challenging. Our study developed and validated a rule-based computable phenotype (CP) to identify LGB individuals and their subgroups using both structured data and unstructured clinical narratives from a large integrated health system. Validating against a sample of 537 chart-reviewed patients, our three best performing CP algorithms balancing different performance metrics, each achieved sensitivity of 1.000, PPV of 0.982, and F1-score of 0.875 in identifying LGB individuals, respectively. Applying the three best-performing CPs, our study also found that the LGB population is younger and experiences a disproportionate burden of adverse health outcomes, particularly mental health distress.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2023 ","pages":"1057-1066"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785915/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sexual gender minorities, including lesbian, gay, and bisexual (LGB) individuals face unique challenges due to discrimination, stigma, and marginalization, which negatively impact their well-being. Electronic health record (EHR) systems present an opportunity for LGB research, but accurately identifying LGB individuals in EHRs is challenging. Our study developed and validated a rule-based computable phenotype (CP) to identify LGB individuals and their subgroups using both structured data and unstructured clinical narratives from a large integrated health system. Validating against a sample of 537 chart-reviewed patients, our three best performing CP algorithms balancing different performance metrics, each achieved sensitivity of 1.000, PPV of 0.982, and F1-score of 0.875 in identifying LGB individuals, respectively. Applying the three best-performing CPs, our study also found that the LGB population is younger and experiences a disproportionate burden of adverse health outcomes, particularly mental health distress.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在电子健康记录中识别性少数群体和性别少数群体的可计算表型。
包括女同性恋、男同性恋和双性恋 (LGB) 在内的性性别少数群体因歧视、污名化和边缘化而面临独特的挑战,这对他们的福祉产生了负面影响。电子健康记录(EHR)系统为女同性恋、男同性恋、双性恋和变性者的研究提供了机会,但在 EHR 中准确识别女同性恋、男同性恋、双性恋和变性者却具有挑战性。我们的研究开发并验证了一种基于规则的可计算表型 (CP),利用来自大型综合医疗系统的结构化数据和非结构化临床叙述来识别 LGB 个人及其亚群。通过对 537 例病历审查患者样本进行验证,我们的三种性能最佳的 CP 算法平衡了不同的性能指标,在识别 LGB 个人方面分别达到了 1.000 的灵敏度、0.982 的 PPV 和 0.875 的 F1 分数。通过应用这三种性能最佳的 CP,我们的研究还发现,LGB 群体更年轻,其不良健康后果的负担过重,尤其是心理健康困扰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ethicara for Responsible AI in Healthcare: A System for Bias Detection and AI Risk Management. Towards Fair Patient-Trial Matching via Patient-Criterion Level Fairness Constraint. Towards Understanding the Generalization of Medical Text-to-SQL Models and Datasets. Transferable and Interpretable Treatment Effectiveness Prediction for Ovarian Cancer via Multimodal Deep Learning. Understanding Cancer Caregiving and Predicting Burden: An Analytics and Machine Learning Approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1