A Systematic Temporal Extraction Pipeline for Medical Concepts in Clinical Notes.

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2024-01-11 eCollection Date: 2023-01-01
Deahan Yu, Ryan W Stidham, V G Vinod Vydiswaran
{"title":"A Systematic Temporal Extraction Pipeline for Medical Concepts in Clinical Notes.","authors":"Deahan Yu, Ryan W Stidham, V G Vinod Vydiswaran","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>With increased application of natural language processing (NLP) in medicine, many NLP models are being developed for uncovering relevant clinical features from electronic health records. Temporal information plays a key role in understanding the context, significance, and interpretation of medical concepts extracted from clinical notes. This is particularly true in situations where the behavior, value, or status of a medical concept changes over time. In this paper, we introduce a systematic framework, NLP annotation-Relaxation-Generation (NRG). NRG compiles incidents of medical concept changes from status annotations and timestamps of multiple clinical notes. We demonstrate the effectiveness of the NRG pipeline by applying it to two medical concepts related to patients with inflammatory bowel disease: extra-intestinal manifestations and medications. We show that the NRG pipeline offers not only insights into medical concept changes over time, but can help convey longitudinal changes in clinical features at both individual and population level.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2023 ","pages":"1314-1323"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785919/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With increased application of natural language processing (NLP) in medicine, many NLP models are being developed for uncovering relevant clinical features from electronic health records. Temporal information plays a key role in understanding the context, significance, and interpretation of medical concepts extracted from clinical notes. This is particularly true in situations where the behavior, value, or status of a medical concept changes over time. In this paper, we introduce a systematic framework, NLP annotation-Relaxation-Generation (NRG). NRG compiles incidents of medical concept changes from status annotations and timestamps of multiple clinical notes. We demonstrate the effectiveness of the NRG pipeline by applying it to two medical concepts related to patients with inflammatory bowel disease: extra-intestinal manifestations and medications. We show that the NRG pipeline offers not only insights into medical concept changes over time, but can help convey longitudinal changes in clinical features at both individual and population level.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
临床笔记中医学概念的系统时间提取管道。
随着自然语言处理(NLP)在医学中的应用日益广泛,许多 NLP 模型正在被开发出来,用于从电子健康记录中发现相关的临床特征。在理解从临床记录中提取的医学概念的背景、意义和解释方面,时间信息起着关键作用。在医疗概念的行为、价值或状态随时间发生变化的情况下尤其如此。在本文中,我们介绍了一个系统框架--NLP 注释-松弛-生成(NRG)。NRG 从多个临床笔记的状态注释和时间戳中编译医学概念的变化事件。我们将 NRG 管道应用于与炎症性肠病患者相关的两个医学概念:肠道外表现和药物,以此证明 NRG 管道的有效性。我们的研究表明,NRG 管道不仅能深入了解医学概念随时间的变化,还能帮助传达个体和人群临床特征的纵向变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ethicara for Responsible AI in Healthcare: A System for Bias Detection and AI Risk Management. Towards Fair Patient-Trial Matching via Patient-Criterion Level Fairness Constraint. Towards Understanding the Generalization of Medical Text-to-SQL Models and Datasets. Transferable and Interpretable Treatment Effectiveness Prediction for Ovarian Cancer via Multimodal Deep Learning. Understanding Cancer Caregiving and Predicting Burden: An Analytics and Machine Learning Approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1