Backdoor Adjustment of Confounding by Provenance for Robust Text Classification of Multi-institutional Clinical Notes.

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2024-01-11 eCollection Date: 2023-01-01
Xiruo Ding, Zhecheng Sheng, Meliha Yetişgen, Serguei Pakhomov, Trevor Cohen
{"title":"Backdoor Adjustment of Confounding by Provenance for Robust Text Classification of Multi-institutional Clinical Notes.","authors":"Xiruo Ding, Zhecheng Sheng, Meliha Yetişgen, Serguei Pakhomov, Trevor Cohen","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Natural Language Processing (NLP) methods have been broadly applied to clinical tasks. Machine learning and deep learning approaches have been used to improve the performance of clinical NLP. However, these approaches require sufficiently large datasets for training, and trained models have been shown to transfer poorly across sites. These issues have led to the promotion of data collection and integration across different institutions for accurate and portable models. However, this can introduce a form of bias called confounding by provenance. When source-specific data distributions differ at deployment, this may harm model performance. To address this issue, we evaluate the utility of backdoor adjustment for text classification in a multi-site dataset of clinical notes annotated for mentions of substance abuse. Using an evaluation framework devised to measure robustness to distributional shifts, we assess the utility of backdoor adjustment. Our results indicate that backdoor adjustment can effectively mitigate for confounding shift.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2023 ","pages":"923-932"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785933/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Natural Language Processing (NLP) methods have been broadly applied to clinical tasks. Machine learning and deep learning approaches have been used to improve the performance of clinical NLP. However, these approaches require sufficiently large datasets for training, and trained models have been shown to transfer poorly across sites. These issues have led to the promotion of data collection and integration across different institutions for accurate and portable models. However, this can introduce a form of bias called confounding by provenance. When source-specific data distributions differ at deployment, this may harm model performance. To address this issue, we evaluate the utility of backdoor adjustment for text classification in a multi-site dataset of clinical notes annotated for mentions of substance abuse. Using an evaluation framework devised to measure robustness to distributional shifts, we assess the utility of backdoor adjustment. Our results indicate that backdoor adjustment can effectively mitigate for confounding shift.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多机构临床笔记稳健文本分类的原产地干扰后门调整。
自然语言处理(NLP)方法已广泛应用于临床任务。机器学习和深度学习方法已被用于提高临床 NLP 的性能。然而,这些方法需要足够大的数据集进行训练,而且训练后的模型在不同机构间的转移效果不佳。这些问题促使人们提倡在不同机构间收集和整合数据,以建立准确、可移植的模型。然而,这可能会引入一种称为 "来源混杂"(confounding by provenance)的偏差。当特定来源的数据分布在部署时有所不同时,这可能会损害模型的性能。为了解决这个问题,我们评估了在一个多站点数据集中对文本分类进行后门调整的效用,该数据集包含了对药物滥用进行注释的临床笔记。我们使用一个评估框架来衡量对分布变化的稳健性,评估了后门调整的效用。结果表明,"后门调整 "可以有效地减少混杂转移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ethicara for Responsible AI in Healthcare: A System for Bias Detection and AI Risk Management. Towards Fair Patient-Trial Matching via Patient-Criterion Level Fairness Constraint. Towards Understanding the Generalization of Medical Text-to-SQL Models and Datasets. Transferable and Interpretable Treatment Effectiveness Prediction for Ovarian Cancer via Multimodal Deep Learning. Understanding Cancer Caregiving and Predicting Burden: An Analytics and Machine Learning Approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1