Capturing Individual-level Social Determinants from Clinical Text.

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2024-01-11 eCollection Date: 2023-01-01
Jennifer J Liang, Diwakar Mahajan, Ananya S Iyengar, Ching-Huei Tsou
{"title":"Capturing Individual-level Social Determinants from Clinical Text.","authors":"Jennifer J Liang, Diwakar Mahajan, Ananya S Iyengar, Ching-Huei Tsou","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Knowledge of social determinants of health (SDOH), which refer to nonmedical factors influencing health outcomes, can help providers improve patient care. However, SDOH are often documented in unstructured notes, making them more inaccessible. Although previous works have attempted SDOH extraction from clinical notes, most efforts defined SDOH more narrowly and focused on the note's social history (SH) section, where social factors are traditionally documented. Here, we introduce a new SDOH dataset covering a broad range of SDOH content that is annotated over entire notes. We characterize what, where, and how SDOH information is documented in clinical text, present baseline systems using a token classification and generative approach, and investigate whether training only on the SH section can effectively extract SDOH from the entire note. The final dataset, consisting of 2,007 annotations covering 7 open-ended SDOH domains over 500 notes, will be publicly released to encourage further research in this area.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2023 ","pages":"484-493"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785909/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Knowledge of social determinants of health (SDOH), which refer to nonmedical factors influencing health outcomes, can help providers improve patient care. However, SDOH are often documented in unstructured notes, making them more inaccessible. Although previous works have attempted SDOH extraction from clinical notes, most efforts defined SDOH more narrowly and focused on the note's social history (SH) section, where social factors are traditionally documented. Here, we introduce a new SDOH dataset covering a broad range of SDOH content that is annotated over entire notes. We characterize what, where, and how SDOH information is documented in clinical text, present baseline systems using a token classification and generative approach, and investigate whether training only on the SH section can effectively extract SDOH from the entire note. The final dataset, consisting of 2,007 annotations covering 7 open-ended SDOH domains over 500 notes, will be publicly released to encourage further research in this area.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从临床文本中捕捉个人层面的社会决定因素。
健康的社会决定因素(SDOH)是指影响健康结果的非医疗因素,了解这些因素有助于医疗服务提供者改善对患者的护理。然而,SDOH 通常记录在非结构化的笔记中,因此更难以获取。尽管以前的研究曾尝试从临床笔记中提取 SDOH,但大多数研究对 SDOH 的定义较为狭隘,且主要集中在笔记的社会病史(SH)部分,因为传统上社会因素都记录在该部分。在这里,我们引入了一个新的 SDOH 数据集,该数据集涵盖了广泛的 SDOH 内容,并对整个病历进行了注释。我们描述了在临床文本中记录 SDOH 信息的内容、位置和方式,介绍了使用标记分类和生成方法的基线系统,并研究了仅在 SH 部分进行训练是否能有效地从整个病历中提取 SDOH 信息。最终的数据集将公开发布,该数据集由 500 篇笔记中涵盖 7 个开放式 SDOH 领域的 2,007 条注释组成,以鼓励在这一领域的进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ethicara for Responsible AI in Healthcare: A System for Bias Detection and AI Risk Management. Towards Fair Patient-Trial Matching via Patient-Criterion Level Fairness Constraint. Towards Understanding the Generalization of Medical Text-to-SQL Models and Datasets. Transferable and Interpretable Treatment Effectiveness Prediction for Ovarian Cancer via Multimodal Deep Learning. Understanding Cancer Caregiving and Predicting Burden: An Analytics and Machine Learning Approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1