Contextual Variation of Clinical Notes induced by EHR Migration.

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2024-01-11 eCollection Date: 2023-01-01
Kurt Miller, Sungrim Moon, Sunyang Fu, Hongfang Liu
{"title":"Contextual Variation of Clinical Notes induced by EHR Migration.","authors":"Kurt Miller, Sungrim Moon, Sunyang Fu, Hongfang Liu","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The structure and semantics of clinical notes vary considerably across different Electronic Health Record (EHR) systems, sites, and institutions. Such heterogeneity hampers the portability of natural language processing (NLP) models in extracting information from the text for clinical research or practice. In this study, we evaluate the contextual variation of clinical notes by measuring the semantic and syntactic similarity of the notes of two sets of physicians comprising four medical specialties across EHR migrations at two Mayo Clinic sites. We find significant semantic and syntactic variation imposed by the context of the EHR system and between medical specialties whereas only minor variation is caused by variation of spatial context across sites. Our findings suggest that clinical language models need to account for process differences at the specialty sublanguage level to be generalizable.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2023 ","pages":"1155-1164"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785835/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The structure and semantics of clinical notes vary considerably across different Electronic Health Record (EHR) systems, sites, and institutions. Such heterogeneity hampers the portability of natural language processing (NLP) models in extracting information from the text for clinical research or practice. In this study, we evaluate the contextual variation of clinical notes by measuring the semantic and syntactic similarity of the notes of two sets of physicians comprising four medical specialties across EHR migrations at two Mayo Clinic sites. We find significant semantic and syntactic variation imposed by the context of the EHR system and between medical specialties whereas only minor variation is caused by variation of spatial context across sites. Our findings suggest that clinical language models need to account for process differences at the specialty sublanguage level to be generalizable.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电子病历迁移引起的临床笔记上下文差异。
在不同的电子健康记录(EHR)系统、网站和机构中,临床笔记的结构和语义差异很大。这种异质性阻碍了自然语言处理(NLP)模型从文本中提取信息用于临床研究或实践的可移植性。在本研究中,我们评估了临床笔记的上下文差异,方法是测量两组医生笔记的语义和句法相似性,这两组医生由四个医学专业组成,在梅奥诊所的两个站点进行了 EHR 迁移。我们发现,电子病历系统的上下文和医学专科之间的语义和句法差异很大,而不同地点的空间上下文差异造成的差异很小。我们的研究结果表明,临床语言模型需要考虑专科子语言层面的过程差异,这样才能具有普遍性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ethicara for Responsible AI in Healthcare: A System for Bias Detection and AI Risk Management. Towards Fair Patient-Trial Matching via Patient-Criterion Level Fairness Constraint. Towards Understanding the Generalization of Medical Text-to-SQL Models and Datasets. Transferable and Interpretable Treatment Effectiveness Prediction for Ovarian Cancer via Multimodal Deep Learning. Understanding Cancer Caregiving and Predicting Burden: An Analytics and Machine Learning Approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1