Identifying the Optimal Look-back Period for Prior Antimicrobial Resistance Clinical Decision Support.

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2024-01-11 eCollection Date: 2023-01-01
John J Hanna, Abdi D Wakene, Lauren N Cooper, Marlon I Diaz, Catherine Chen, Christoph U Lehmann, Richard J Medford
{"title":"Identifying the Optimal Look-back Period for Prior Antimicrobial Resistance Clinical Decision Support.","authors":"John J Hanna, Abdi D Wakene, Lauren N Cooper, Marlon I Diaz, Catherine Chen, Christoph U Lehmann, Richard J Medford","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Lack of consensus on the appropriate look-back period for multi-drug resistance (MDR) complicates antimicrobial clinical decision support. We compared the predictive performance of different MDR look-back periods for five common MDR mechanisms (MRSA, VRE, ESBL, AmpC, CRE).</p><p><strong>Methods: </strong>We mapped microbiological cultures to MDR mechanisms and labeled them at different look-back periods. We compared predictive performance for each look-back period-MDR combination using precision, recall, F1 scores, and odds ratios.</p><p><strong>Results: </strong>Longer look-back periods resulted in lower odds ratios, lower precisions, higher recalls, and lower delta changes in precision and recall compared to shorter periods. We observed higher precision with more information available to clinicians.</p><p><strong>Conclusion: </strong>A previously positive MDR culture may have significant enough precision depending on the mechanism of resistance and varying information available. One year is a clinically relevant and statistically sound look-back period for empiric antimicrobial decision-making at varying points of care for the studied population.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2023 ","pages":"969-976"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785855/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Lack of consensus on the appropriate look-back period for multi-drug resistance (MDR) complicates antimicrobial clinical decision support. We compared the predictive performance of different MDR look-back periods for five common MDR mechanisms (MRSA, VRE, ESBL, AmpC, CRE).

Methods: We mapped microbiological cultures to MDR mechanisms and labeled them at different look-back periods. We compared predictive performance for each look-back period-MDR combination using precision, recall, F1 scores, and odds ratios.

Results: Longer look-back periods resulted in lower odds ratios, lower precisions, higher recalls, and lower delta changes in precision and recall compared to shorter periods. We observed higher precision with more information available to clinicians.

Conclusion: A previously positive MDR culture may have significant enough precision depending on the mechanism of resistance and varying information available. One year is a clinically relevant and statistically sound look-back period for empiric antimicrobial decision-making at varying points of care for the studied population.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
确定先前抗菌药耐药性临床决策支持的最佳回溯期。
背景:由于对多重耐药性(MDR)的适当回溯期缺乏共识,使得抗菌药物临床决策支持变得更加复杂。我们比较了不同的 MDR 回溯期对五种常见 MDR 机制(MRSA、VRE、ESBL、AmpC、CRE)的预测性能:方法:我们将微生物培养物映射到 MDR 机制,并在不同的回溯期对其进行标记。我们使用精确度、召回率、F1 分数和几率比对每个回溯期-MDR 组合的预测性能进行了比较:结果:与较短的回溯期相比,较长的回溯期会导致较低的几率比、较低的精确度、较高的召回率,以及较低的精确度和召回率三角洲变化。我们观察到,临床医生获得的信息越多,精确度越高:结论:根据耐药机制和可用信息的不同,先前阳性的 MDR 培养结果可能具有足够高的精确度。对于所研究人群的不同护理点,一年是经验性抗菌药物决策的临床相关性和统计学合理的回溯期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ethicara for Responsible AI in Healthcare: A System for Bias Detection and AI Risk Management. Towards Fair Patient-Trial Matching via Patient-Criterion Level Fairness Constraint. Towards Understanding the Generalization of Medical Text-to-SQL Models and Datasets. Transferable and Interpretable Treatment Effectiveness Prediction for Ovarian Cancer via Multimodal Deep Learning. Understanding Cancer Caregiving and Predicting Burden: An Analytics and Machine Learning Approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1