Evaluating Deep Learning Performance for P300 Neural Signal Classification.

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2024-01-11 eCollection Date: 2023-01-01
Yashwanth Ravipati, Nader Pouratian, Corey Arnold, William Speier
{"title":"Evaluating Deep Learning Performance for P300 Neural Signal Classification.","authors":"Yashwanth Ravipati, Nader Pouratian, Corey Arnold, William Speier","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>P300 event-related potential (ERP) signals are useful neurological biomarkers, and their accurate classification is important when studying the cognitive functions in patients with neurological disorders. While many studies have proposed models for classifying these signals, results have been inconsistent. As a result, a consensus has not yet been reached on the optimal model for this classification. In this study, we evaluated the performance of classic machine learning and novel deep learning methods for P300 signal classification in both within and across subject training scenarios across a dataset of 75 subjects. Although the deep learning models attained high attended event classification F1 scores, they did not outperform Stepwise Linear Discriminant Analysis (SWLDA) in the within-subject paradigm. In the across-subject paradigm, however, EEG-Inception was able to significantly outperform SWLDA. These results suggest that deep learning models may provide a general model that do not require subject-specific training and calibration in clinical settings.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2023 ","pages":"1218-1225"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785884/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

P300 event-related potential (ERP) signals are useful neurological biomarkers, and their accurate classification is important when studying the cognitive functions in patients with neurological disorders. While many studies have proposed models for classifying these signals, results have been inconsistent. As a result, a consensus has not yet been reached on the optimal model for this classification. In this study, we evaluated the performance of classic machine learning and novel deep learning methods for P300 signal classification in both within and across subject training scenarios across a dataset of 75 subjects. Although the deep learning models attained high attended event classification F1 scores, they did not outperform Stepwise Linear Discriminant Analysis (SWLDA) in the within-subject paradigm. In the across-subject paradigm, however, EEG-Inception was able to significantly outperform SWLDA. These results suggest that deep learning models may provide a general model that do not require subject-specific training and calibration in clinical settings.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估 P300 神经信号分类的深度学习性能。
P300 事件相关电位(ERP)信号是有用的神经系统生物标志物,对其进行准确分类对于研究神经系统疾病患者的认知功能非常重要。虽然许多研究都提出了对这些信号进行分类的模型,但结果并不一致。因此,对于这种分类的最佳模型尚未达成共识。在本研究中,我们评估了经典机器学习方法和新型深度学习方法在 75 名受试者的数据集上,在受试者内部和跨受试者训练场景下进行 P300 信号分类的性能。虽然深度学习模型获得了较高的出席事件分类 F1 分数,但在主体内范式中,它们的表现并没有优于逐步线性判别分析(SWLDA)。然而,在跨主体范式中,EEG-Inception 的表现明显优于 SWLDA。这些结果表明,深度学习模型可以提供一种通用模型,在临床环境中无需针对特定受试者进行训练和校准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ethicara for Responsible AI in Healthcare: A System for Bias Detection and AI Risk Management. Towards Fair Patient-Trial Matching via Patient-Criterion Level Fairness Constraint. Towards Understanding the Generalization of Medical Text-to-SQL Models and Datasets. Transferable and Interpretable Treatment Effectiveness Prediction for Ovarian Cancer via Multimodal Deep Learning. Understanding Cancer Caregiving and Predicting Burden: An Analytics and Machine Learning Approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1